issue_comments
1 row where issue = 1427457128 and user = 3171991 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Inspecting arguments with accessors · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1297218347 | https://github.com/pydata/xarray/issues/7234#issuecomment-1297218347 | https://api.github.com/repos/pydata/xarray/issues/7234 | IC_kwDOAMm_X85NUfsr | ljstrnadiii 3171991 | 2022-10-31T15:00:06Z | 2022-10-31T15:09:42Z | NONE | Yeah, I was afraid of that lol. This must also be a pandas issue, too, since they recommend a similar way of extending pandas dataframes. I couldn't find a similar pandas issue/pr and was a bit surprised by that. My temp solution is to use type narrowing:
|
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Inspecting arguments with accessors 1427457128 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1