home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where issue = 1364798843 sorted by updated_at descending

✖
✖

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 2

  • benbovy 1
  • mathause 1

issue 1

  • Rework PandasMultiIndex.sel internals · 2 ✖

author_association 1

  • MEMBER 2
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1255524719 https://github.com/pydata/xarray/pull/7004#issuecomment-1255524719 https://api.github.com/repos/pydata/xarray/issues/7004 IC_kwDOAMm_X85K1clv mathause 10194086 2022-09-22T20:38:40Z 2022-09-22T20:38:40Z MEMBER

It would be nice to be able to preserve the MultiIndex with sel (e.g. ds.sel(one=["a"]) but if it makes the behavior inconsistent it is no good either...

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Rework PandasMultiIndex.sel internals 1364798843
1240463387 https://github.com/pydata/xarray/pull/7004#issuecomment-1240463387 https://api.github.com/repos/pydata/xarray/issues/7004 IC_kwDOAMm_X85J7_gb benbovy 4160723 2022-09-08T09:28:25Z 2022-09-08T09:28:25Z MEMBER

it is now allowed to provide array-like labels.

Hmm not sure if it's a good idea... I find get_locs() a bit confusing like in the example below where a 4-labels array for level "one" returns a 3-items location integer array:

```python

is the 3rd label ("b") ignored?

midx.get_locs((np.array(["b", "a", "b", "c"]), 0))

array([4, 0, 8])

```

That differs too much from the vectorized selection based on single pandas indexes...

Fancy indexing with n-d label arrays doesn't work either:

```python midx.get_locs((np.array([["a", "a"], ["a", "a"]]), 0))

InvalidIndexError: [['a' 'a']

['a' 'a']]

```

And providing Variable or DataArray objects as labels would make things event harder, unless we ignore their dimension names and coordinates (but then it wouldn't be consistent with vectorized selection based on single pandas indexes).

Probably not worth it then?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Rework PandasMultiIndex.sel internals 1364798843

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 183.319ms · About: xarray-datasette
  • Sort ascending
  • Sort descending
  • Facet by this
  • Hide this column
  • Show all columns
  • Show not-blank rows