issue_comments
1 row where issue = 1098915891 and user = 90008 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- [FEATURE]: to_netcdf and additional keyword arguments · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1009820092 | https://github.com/pydata/xarray/issues/6153#issuecomment-1009820092 | https://api.github.com/repos/pydata/xarray/issues/6153 | IC_kwDOAMm_X848MKG8 | hmaarrfk 90008 | 2022-01-11T10:24:37Z | 2022-01-11T10:24:37Z | CONTRIBUTOR | Thank you @kmuehlbauer for the explicit PR link. I do plan on adding alignment features to h5py then to bring it toward h5netcdf. So I think something like this will be useful in the future. Feature request link: https://github.com/h5py/h5py/issues/2034 |
{ "total_count": 2, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 } |
[FEATURE]: to_netcdf and additional keyword arguments 1098915891 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1