home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

6 rows where author_association = "NONE" and user = 90059220 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: issue_url, created_at (date), updated_at (date)

issue 4

  • .sel return errors when using floats for no apparent reason 3
  • Rolling.argmin() and Rolling.argmax() over multiple dimensions does not work 1
  • DataArray.rolling.reduce() does not apply correctly numpy.nanpercentile 1
  • .loc[] cannot find a value that .sel() can find without problem 1

user 1

  • AlxLhrNc · 6 ✖

author_association 1

  • NONE · 6 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1478617771 https://github.com/pydata/xarray/issues/7630#issuecomment-1478617771 https://api.github.com/repos/pydata/xarray/issues/7630 IC_kwDOAMm_X85YIeqr AlxLhrNc 90059220 2023-03-21T21:39:22Z 2023-03-21T21:39:22Z NONE

Thanks all, but it returns the ValueError: output array is read-only. Apparently, this is caused by .expand_dims() (see https://github.com/pydata/xarray/issues/3813). The work-around seems to be python nc = nc.expand_dims(time=times_).copy() Though I have no idea why.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  .loc[] cannot find a value that .sel() can find without problem 1624560934
1267830185 https://github.com/pydata/xarray/issues/7108#issuecomment-1267830185 https://api.github.com/repos/pydata/xarray/issues/7108 IC_kwDOAMm_X85LkY2p AlxLhrNc 90059220 2022-10-05T02:21:15Z 2022-10-05T02:21:15Z NONE

Thanks, it finally worked.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  .sel return errors when using floats for no apparent reason 1391699976
1266030505 https://github.com/pydata/xarray/issues/7108#issuecomment-1266030505 https://api.github.com/repos/pydata/xarray/issues/7108 IC_kwDOAMm_X85Ldhep AlxLhrNc 90059220 2022-10-03T20:49:24Z 2022-10-03T20:49:24Z NONE

The values in nc.lon are technically ordered 'as they would be on a mercator projected map with origin at 0 N-0 E' considering I am dealing with data around 180 lon. Not that it would mater for pandas/xarray in that case. I suppose re-projecting it on a 0-360 would be the only way around this specific issue.

And to answer earlier comments, sub = nc_bug.sel(lon = 161.001, tolerance=.1) raised the following: KeyError: "not all values found in index 'lon'. Try setting themethodkeyword argument (example: method='nearest')." Which, when tried raised ValueError: index must be monotonic increasing or decreasing. It is indeed a problem with the order of the index.

Thanks for your help and your time.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  .sel return errors when using floats for no apparent reason 1391699976
1263045823 https://github.com/pydata/xarray/issues/7108#issuecomment-1263045823 https://api.github.com/repos/pydata/xarray/issues/7108 IC_kwDOAMm_X85LSIy_ AlxLhrNc 90059220 2022-09-30T02:58:34Z 2022-09-30T02:58:34Z NONE

Returned the following: NotImplementedError: cannot use ``method`` argument if any indexers are slice objects

``` Traceback (most recent call last):

Cell In [3], line 1 sub = nc_bug.sel(lon = slice(161.001, 162.001), tolerance=0.1)

File ~\Installed_Programs\Anaconda3\envs\phd\lib\site-packages\xarray\core\dataset.py:2533 in sel query_results = map_index_queries(

File ~\Installed_Programs\Anaconda3\envs\phd\lib\site-packages\xarray\core\indexing.py:183 in map_index_queries results.append(index.sel(labels, **options)) # type: ignore[call-arg]

File ~\Installed_Programs\Anaconda3\envs\phd\lib\site-packages\xarray\core\indexes.py:377 in sel indexer = _query_slice(self.index, label, coord_name, method, tolerance) ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  .sel return errors when using floats for no apparent reason 1391699976
1176948402 https://github.com/pydata/xarray/issues/6759#issuecomment-1176948402 https://api.github.com/repos/pydata/xarray/issues/6759 IC_kwDOAMm_X85GJs6y AlxLhrNc 90059220 2022-07-07T01:43:10Z 2022-07-07T01:43:10Z NONE

Wow, I should really dig deeper in the documentation sometimes. Thanks a lot, it fixed it. Although it does remove the original nan, which can be reintroduced using a mask. Thank you again for your time.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray.rolling.reduce() does not apply correctly numpy.nanpercentile 1296475783
1158434252 https://github.com/pydata/xarray/issues/6691#issuecomment-1158434252 https://api.github.com/repos/pydata/xarray/issues/6691 IC_kwDOAMm_X85FDE3M AlxLhrNc 90059220 2022-06-17T02:54:27Z 2022-06-17T02:54:27Z NONE

Thank you for upgrading this question. Using keewis suggestion:

We could try to work around this by wrapping argmin and argmax in a function that ravels / unravels the reduce dimensions.

I had a look into numpy documentation and came up with a work around like so: ```python import numpy as np, xarray as xr

arr = xr.DataArray(np.ones((5,6,7))) arr[1,3,2], arr[3,1,4] = 0, 2

print('Values:',arr.min(), arr.max())

min_pos = np.concatenate(np.where(arr == arr.min())) max_pos = np.concatenate(np.where(arr == arr.max())) print('Indexes on nD:', min_pos, max_pos) ``` It is not perfect I suppose but it is doing the job for now.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Rolling.argmin() and Rolling.argmax() over multiple dimensions does not work 1268821199

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 152.836ms · About: xarray-datasette