home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where author_association = "NONE" and user = 89445148 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • mariasanur · 1 ✖

issue 1

  • Using open_mfdataset the size of the final data becomes huge 1

author_association 1

  • NONE · 1 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1308489577 https://github.com/pydata/xarray/issues/7274#issuecomment-1308489577 https://api.github.com/repos/pydata/xarray/issues/7274 IC_kwDOAMm_X85N_fdp mariasanur 89445148 2022-11-09T09:50:39Z 2022-11-09T09:50:39Z NONE

Thank you so much for your help. I've just started using xarray for large data. There was indeed a compression level.

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Using open_mfdataset the size of the final data becomes huge 1441649908

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 24.2ms · About: xarray-datasette