home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

15 rows where author_association = "NONE" and user = 6215361 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • nparley · 15 ✖

issue 1

  • xarray to and from iris 15

author_association 1

  • NONE · 15 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
348225565 https://github.com/pydata/xarray/pull/814#issuecomment-348225565 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDM0ODIyNTU2NQ== nparley 6215361 2017-11-30T15:38:57Z 2017-11-30T15:38:57Z NONE

I think also I could make you a contributor or transfer the branch to someone. So that might be an option too.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
309667894 https://github.com/pydata/xarray/pull/814#issuecomment-309667894 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDMwOTY2Nzg5NA== nparley 6215361 2017-06-20T07:25:11Z 2017-06-20T07:25:11Z NONE

Sorry guys I don't have time to do anything on this (or any open source stuff) at the moment.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
262383397 https://github.com/pydata/xarray/pull/814#issuecomment-262383397 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDI2MjM4MzM5Nw== nparley 6215361 2016-11-22T22:21:15Z 2016-11-22T22:21:15Z NONE

This did used to have some tests, but they seem to have got lost somewhere along the way. I'll add the old tests back in, which would be a start.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
238586208 https://github.com/pydata/xarray/pull/814#issuecomment-238586208 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIzODU4NjIwOA== nparley 6215361 2016-08-09T15:15:53Z 2016-08-09T15:15:53Z NONE

This adds the extra code that @pelson suggested but it would be nice to create a little unit test with a mixed Dimension and Auxiliary coordinates. Is there an easy way to create a simple cube in Iris that could test this?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
228596914 https://github.com/pydata/xarray/pull/814#issuecomment-228596914 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIyODU5NjkxNA== nparley 6215361 2016-06-26T11:35:36Z 2016-06-26T11:35:36Z NONE

@shoyer I have not forgotten about this PR, I just been working a lot on a pandas PR updating the ci and it's been taking up a lot of my spare time.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
221624107 https://github.com/pydata/xarray/pull/814#issuecomment-221624107 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIyMTYyNDEwNw== nparley 6215361 2016-05-25T16:04:45Z 2016-05-25T16:04:45Z NONE

I have merged upstream and it seems to be failing but I don't think it's related to this PR, as a clean clone of master branch is also failing https://travis-ci.org/nparley/xarray/jobs/132872124

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
218094052 https://github.com/pydata/xarray/pull/814#issuecomment-218094052 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIxODA5NDA1Mg== nparley 6215361 2016-05-10T08:39:59Z 2016-05-10T08:39:59Z NONE

@shoyer @pelson @rhattersley Is there anything you think could be added to this PR or is this ok for now?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
212415277 https://github.com/pydata/xarray/pull/814#issuecomment-212415277 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIxMjQxNTI3Nw== nparley 6215361 2016-04-20T13:05:07Z 2016-04-20T13:05:07Z NONE

OK this update uses iris.fileformats._pyke_rules.compiled_krb.fc_rules_cf_fc as @pelson mentioned in the comment above. I also added a cell method to the test

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
207460668 https://github.com/pydata/xarray/pull/814#issuecomment-207460668 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIwNzQ2MDY2OA== nparley 6215361 2016-04-08T14:47:08Z 2016-04-08T14:47:08Z NONE

OK the latest commit tries to do the cell methods:

``` python

print(cube) sea_water_potential_temperature / (degC) (-- : 148; -- : 180) Auxiliary coordinates: latitude x x longitude x x Scalar coordinates: depth: 4.99994 m, bound=(0.0, 10.0) m time: 1-01-01 12:00:00 Attributes: Conventions: CF-1.5 Cell methods: mean: time_counter print(xarray.DataArray.from_iris(cube)) <xarray.DataArray u'votemper' (dim0: 148, dim1: 180)> array([[ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]], dtype=float32) Coordinates: deptht float64 5.0 time_counter object 1-01-01 12:00:00 nav_lat (dim0, dim1) float32 -78.1906 -78.1906 -78.1906 -78.1906 ... nav_lon (dim0, dim1) float32 80.0 82.0 83.9999 85.9999 87.9999 ... * dim0 (dim0) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... * dim1 (dim1) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... Attributes: units: degC long_name: Temperature standard_name: sea_water_potential_temperature cell_methods: time_counter: mean Conventions: CF-1.5 print(xarray.DataArray.from_iris(cube).to_iris()) sea_water_potential_temperature / (degC) (dim0: 148; dim1: 180) Dimension coordinates: dim0 x - dim1 - x Auxiliary coordinates: latitude x x longitude x x Scalar coordinates: depth: 4.99993801117 m time: 1-01-01 12:00:00 Attributes: Conventions: CF-1.5 Cell methods: mean: time_counter ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
205292756 https://github.com/pydata/xarray/pull/814#issuecomment-205292756 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIwNTI5Mjc1Ng== nparley 6215361 2016-04-04T13:16:45Z 2016-04-04T13:16:45Z NONE

The comment was just to mention that I had based my code on the code from cdms2 from #236 as suggested by @shoyer. I guess this comment would not be needed in the final merge.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
205207053 https://github.com/pydata/xarray/pull/814#issuecomment-205207053 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIwNTIwNzA1Mw== nparley 6215361 2016-04-04T09:17:20Z 2016-04-04T09:17:20Z NONE

Latest commit fixes bug if the Iris cube does not have any dimension coordinates. What do people think about keeping or dropping the automatic dimension coordinates that xarray creates? And if dropping should be done should all coordinates named dim{x} be dropped? Or are we happy with just leaving them there?

For example at the moment:

``` python

print(cube) sea_water_potential_temperature / (degC) (-- : 148; -- : 180) Auxiliary coordinates: latitude x x longitude x x Scalar coordinates: depth: 4.99994 m, bound=(0.0, 10.0) m time: 1-01-01 12:00:00 Attributes: Conventions: CF-1.5 Cell methods: mean: time_counter print(xarray.DataArray.from_iris(cube).to_iris()) sea_water_potential_temperature / (degC) (dim0: 148; dim1: 180) Dimension coordinates: dim0 x - dim1 - x Auxiliary coordinates: latitude x x longitude x x Scalar coordinates: depth: 4.99993801117 m time: 1-01-01 12:00:00 Attributes: Conventions: CF-1.5

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
204950134 https://github.com/pydata/xarray/pull/814#issuecomment-204950134 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIwNDk1MDEzNA== nparley 6215361 2016-04-03T11:53:25Z 2016-04-03T11:53:25Z NONE

Ok, bounds can just be something to add to the converter if / when it's supported.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
204765160 https://github.com/pydata/xarray/pull/814#issuecomment-204765160 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIwNDc2NTE2MA== nparley 6215361 2016-04-02T17:48:01Z 2016-04-02T17:48:01Z NONE

There is a problem when it comes to bounds. Xarray adds the bounds as another DataArray to the DataSet, i.e.:

Data variables: votemper (dim0, dim1) float64 nan nan nan nan nan nan nan nan nan ... deptht_bnds (bnds) float64 0.0 10.0

I can get the name of this variable from the Coord attribute in the DataArray for another variable, i.e. ds['votemper'].coords['deptht'].bounds but can't get the bound array from the DataArray? is that correct?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
204340656 https://github.com/pydata/xarray/pull/814#issuecomment-204340656 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIwNDM0MDY1Ng== nparley 6215361 2016-04-01T10:21:23Z 2016-04-01T10:21:23Z NONE

docker pull nparley/xarray_test is a python 2.7 environment with Iris etc. which mirrors the travis CONDA_ENV=py27-cdat+iris+pynio.

It doesn't do everything, but it's a good first go. Here is an example:

``` python

import xarray import iris nc_file = 'E1_north_america.nc' cube = iris.load_cube(nc_file) darray = xarray.open_dataset(nc_file)['air_temperature'] print(darray) <xarray.DataArray 'air_temperature' (time: 240, latitude: 37, longitude: 49)> [435120 values with dtype=float32] Coordinates: * time (time) datetime64[ns] 1860-06-01 1861-06-01 ... * latitude (latitude) float32 15.0 16.25 17.5 18.75 20.0 ... * longitude (longitude) float32 225.0 226.875 228.75 ... forecast_period (time) timedelta64[ns] 449 days 18:00:00 ... forecast_reference_time datetime64[ns] 1859-09-01T06:00:00 height float64 1.5 Attributes: standard_name: air_temperature units: K Model scenario: E1 ukmo__um_stash_source: m01s03i236 source: Data from Met Office Unified Model 6.05 cell_methods: time: mean (interval: 6 hour) print(xarray.DataArray.from_iris(cube)) <xarray.DataArray u'air_temperature' (time: 240, latitude: 37, longitude: 49)> [435120 values with dtype=float32] Coordinates: * time (time) datetime64[ns] 1860-06-01 1861-06-01 ... * latitude (latitude) float32 15.0 16.25 17.5 18.75 20.0 ... * longitude (longitude) float32 225.0 226.875 228.75 ... forecast_reference_time datetime64[ns] 1859-09-01T06:00:00 height float64 1.5 forecast_period (time) timedelta64[ns] 449 days 18:00:00 ... Attributes: Model scenario: E1 STASH: m01s03i236 Conventions: CF-1.5 source: Data from Met Office Unified Model 6.05 standard_name: air_temperature units: K print(cube) air_temperature / (K) (time: 240; latitude: 37; longitude: 49) Dimension coordinates: time x - - latitude - x - longitude - - x Auxiliary coordinates: forecast_period x - - Scalar coordinates: forecast_reference_time: 1859-09-01 06:00:00 height: 1.5 m Attributes: Conventions: CF-1.5 Model scenario: E1 STASH: m01s03i236 source: Data from Met Office Unified Model 6.05 Cell methods: mean: time (6 hour print(darray.to_iris()) air_temperature / (K) (time: 240; latitude: 37; longitude: 49) Dimension coordinates: time x - - latitude - x - longitude - - x Auxiliary coordinates: forecast_period x - - Scalar coordinates: forecast_reference_time: 1859-09-01 06:00:00 height: 1.5 m Attributes: Model scenario: E1 source: Data from Met Office Unified Model 6.05 ukmo__um_stash_source: m01s03i236 ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657
204337823 https://github.com/pydata/xarray/pull/814#issuecomment-204337823 https://api.github.com/repos/pydata/xarray/issues/814 MDEyOklzc3VlQ29tbWVudDIwNDMzNzgyMw== nparley 6215361 2016-04-01T10:09:31Z 2016-04-01T10:09:31Z NONE

Reference https://github.com/pydata/xarray/issues/621 and https://github.com/pydata/xarray/issues/37. Uses template from https://github.com/pydata/xarray/pull/236.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray to and from iris 145140657

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 17.217ms · About: xarray-datasette