issue_comments
1 row where author_association = "NONE" and user = 42300091 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
553920017 | https://github.com/pydata/xarray/issues/2281#issuecomment-553920017 | https://api.github.com/repos/pydata/xarray/issues/2281 | MDEyOklzc3VlQ29tbWVudDU1MzkyMDAxNw== | tollers 42300091 | 2019-11-14T14:47:52Z | 2019-11-14T14:47:52Z | NONE | Have there been any updates on the handling of multi-dimensional co-ordinates in xarray, in particular interpolation/indexing using such co-ordinates, as discussed here? For geographical data with curvilinear grids (using latitudes and longitudes) this issue can become a real headache to deal with. |
{ "total_count": 12, "+1": 12, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Does interp() work on curvilinear grids (2D coordinates) ? 340486433 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1