home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where author_association = "NONE" and user = 377869 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: issue_url, created_at (date), updated_at (date)

issue 2

  • Add example showing how to sample gridded data at points 2
  • interpolate/sample array at point 1

user 1

  • nfaggian · 3 ✖

author_association 1

  • NONE · 3 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
61435907 https://github.com/pydata/xarray/issues/241#issuecomment-61435907 https://api.github.com/repos/pydata/xarray/issues/241 MDEyOklzc3VlQ29tbWVudDYxNDM1OTA3 nfaggian 377869 2014-11-03T02:48:19Z 2014-11-03T02:48:19Z NONE

I think pyproj would be great to use.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add example showing how to sample gridded data at points 44492906
60332922 https://github.com/pydata/xarray/issues/191#issuecomment-60332922 https://api.github.com/repos/pydata/xarray/issues/191 MDEyOklzc3VlQ29tbWVudDYwMzMyOTIy nfaggian 377869 2014-10-24T01:19:47Z 2014-10-24T01:19:47Z NONE

For what its worth, I wrote this today. Its a long way from being useful but I find it's working well enough to fill gaps in data after a reindex()

``` py from scipy import interpolate, ndimage

def linterp(data, index, interp_index, order=1): """ Parameters ---------- data: nd-array (cube). index: index (floats) associated with the cube. interp_index: float interpolation poing. Returns ------- interpolated: nd-array An interpolated field. """

# Form a cube of the values, which we will imagine is our function f()
cube = np.array(data, dtype=np.float)

# Form a relationship, and this can be non-linear, between slice indexes and
# the "index".
m = interpolate.interp1d(index, range(len(index)))

# Form a set of coordinates to sample over - x
y, x = np.mgrid[0:data[0].shape[0], 0:data[0].shape[1]]
z = np.ones_like(y) * m(interp_index)

# Perform the sampling f(x), map coordinates is performing a linear
# interpolation of the coordinates in the cube.
return ndimage.map_coordinates(
    cube,
    [z, y, x],
    order=order,
    cval=np.nan)

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  interpolate/sample array at point 38849807
59505670 https://github.com/pydata/xarray/issues/241#issuecomment-59505670 https://api.github.com/repos/pydata/xarray/issues/241 MDEyOklzc3VlQ29tbWVudDU5NTA1Njcw nfaggian 377869 2014-10-17T12:31:34Z 2014-10-17T12:31:34Z NONE

I read through #214 and noticed the use of a kd-tree might be a bit off for lat/lons. In the past I have had to transform coordinates first. Worth thinking about.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add example showing how to sample gridded data at points 44492906

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 1119.116ms · About: xarray-datasette