issue_comments
4 rows where author_association = "NONE" and user = 1961038 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- ktyle · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
450692965 | https://github.com/pydata/xarray/issues/2624#issuecomment-450692965 | https://api.github.com/repos/pydata/xarray/issues/2624 | MDEyOklzc3VlQ29tbWVudDQ1MDY5Mjk2NQ== | ktyle 1961038 | 2018-12-31T21:44:39Z | 2018-12-31T21:44:39Z | NONE | Ok, thanks all for the advice. Clearly further subdivisions of the multi-level variables are in order. However, working with a single level (sea-level pressure) from our CFSR datasets, I find that if I specify the chunksize on the Time dimension when using xr.open_mfdataset, the to_zarr function fails on the resulting dataset with a "non-uniform chunksize" error. If, however, I take the resulting dataset and "re-chunk" with the .chunk method, although the two datasets "look identical", the to_zarr write succeeds. Link to notebook: https://nbviewer.jupyter.org/url/www.atmos.albany.edu/facstaff/ktyle/temp/Xarray_to_zarr_ex1.ipynb |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray to Zarr error (in compress / numcodecs functions) 393214032 | |
449146417 | https://github.com/pydata/xarray/issues/2624#issuecomment-449146417 | https://api.github.com/repos/pydata/xarray/issues/2624 | MDEyOklzc3VlQ29tbWVudDQ0OTE0NjQxNw== | ktyle 1961038 | 2018-12-20T21:49:15Z | 2018-12-20T21:59:33Z | NONE | @rabernat Yeah I think the chunksize in the time dimension is too large: ```` <xarray.Dataset> Dimensions: (lat: 361, lev: 32, lon: 720, time: 2920) Coordinates: * lat (lat) float32 -90.0 -89.5 -89.0 -88.5 -88.0 ... 88.5 89.0 89.5 90.0 * lon (lon) float32 -180.0 -179.5 -179.0 -178.5 ... 178.5 179.0 179.5 * lev (lev) float32 1000.0 975.0 950.0 925.0 ... 50.0 30.0 20.0 10.0 * time (time) datetime64[ns] 2013-01-01 ... 2014-12-31T18:00:00 Data variables: g (time, lev, lat, lon) float32 dask.array<shape=(2920, 32, 361, 720), chunksize=(1460, 32, 361, 720)> ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray to Zarr error (in compress / numcodecs functions) 393214032 | |
363587681 | https://github.com/pydata/xarray/issues/1882#issuecomment-363587681 | https://api.github.com/repos/pydata/xarray/issues/1882 | MDEyOklzc3VlQ29tbWVudDM2MzU4NzY4MQ== | ktyle 1961038 | 2018-02-06T22:31:31Z | 2018-02-06T22:31:31Z | NONE | Although not active on the Xarray github, I am an early adopter and active user of the software and am looking for a good excuse to go to scipy for the first time ...I would be glad to assist! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray tutorial at SciPy 2018? 293913247 | |
250777441 | https://github.com/pydata/xarray/issues/1020#issuecomment-250777441 | https://api.github.com/repos/pydata/xarray/issues/1020 | MDEyOklzc3VlQ29tbWVudDI1MDc3NzQ0MQ== | ktyle 1961038 | 2016-09-30T15:38:01Z | 2016-09-30T15:38:01Z | NONE | Good to know, and since the system I'm running on has 96 GB of RAM, I think your statement about pandas is correct too, as I also get the memory error when running on a smaller (18GB) dataset. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Memory error when converting dataset to dataframe 180080354 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 3