issue_comments
1 row where author_association = "NONE" and user = 13491008 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1227649280 | https://github.com/pydata/xarray/issues/4285#issuecomment-1227649280 | https://api.github.com/repos/pydata/xarray/issues/4285 | IC_kwDOAMm_X85JLHEA | pbranson 13491008 | 2022-08-25T19:01:39Z | 2022-08-25T19:01:39Z | NONE | Just adding another use-case for this discussion, Argo float data. These are oceanographic instruments that vertically profile the ocean, and the length of each profile changes: https://argopy.readthedocs.io/en/latest/data_fetching.html |
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Awkward array backend? 667864088 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1