issue_comments
4 rows where author_association = "NONE" and user = 10809480 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- andytraumueller · 4 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 490421774 | https://github.com/pydata/xarray/issues/2946#issuecomment-490421774 | https://api.github.com/repos/pydata/xarray/issues/2946 | MDEyOklzc3VlQ29tbWVudDQ5MDQyMTc3NA== | andytraumueller 10809480 | 2019-05-08T09:44:25Z | 2019-05-08T09:49:02Z | NONE | interesting fact i just learned. when you have to process over a huge dataset, first export it as a complete single netcdf file, then calculate its aggregation function. Its a workaround, i suppose bottleneck or dask needs to have its complete set first. For mean it just simply works because of the easy calculation method, for std i think dask or bottleneck assume a nan as a zero for calculation purposes.
It could be problematic by huuuuge datasets in the tb size. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
std interprets continents as zero not nan 441222339 | |
| 490394601 | https://github.com/pydata/xarray/issues/2946#issuecomment-490394601 | https://api.github.com/repos/pydata/xarray/issues/2946 | MDEyOklzc3VlQ29tbWVudDQ5MDM5NDYwMQ== | andytraumueller 10809480 | 2019-05-08T08:18:21Z | 2019-05-08T09:01:56Z | NONE | fixed: synthetic dataset of the polar region -60 - -90, in the mean calculation everything is proper and nans are ignored. std still looks suspicious. ```python import xarray as xr import glob import numpy as np data = xr.open_dataset(r"test.nc")
data.mean(dim="time", skipna=True).to_netcdf(r"mean_test.nc")
Dropbox to files: https://www.dropbox.com/sh/yuf114u143mj2l3/AABuQfC5wu4nrWDH4GsGgFyJa?dl=0 |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
std interprets continents as zero not nan 441222339 | |
| 460325261 | https://github.com/pydata/xarray/issues/2417#issuecomment-460325261 | https://api.github.com/repos/pydata/xarray/issues/2417 | MDEyOklzc3VlQ29tbWVudDQ2MDMyNTI2MQ== | andytraumueller 10809480 | 2019-02-04T16:57:27Z | 2019-02-04T20:07:09Z | NONE | hi, my testcode is running properly on 5 threads thanks for the help ```python import xarray as xr import os import numpy import sys import dask from multiprocessing.pool import ThreadPool dask-worker = --nthreads 1with dask.config.set(schedular='threads', pool=ThreadPool(5)): dset = xr.open_mfdataset("/data/Environmental_Data/Sea_Surface_Height//.nc", engine='netcdf4', concat_dim='time', chunks={"latitude":180,"longitude":360}) dset1 = dset["adt"]-dset["sla"] dset1.to_dataset(name = 'ssh_mean') dset["ssh_mean"] = dset1 dset = dset.drop("crs") dset = dset.drop("lat_bnds") dset = dset.drop("lon_bnds") dset = dset.drop("xarray_dataarray_variable") dset = dset.drop("nv") dset_all_over_monthly_mean = dset.groupby("time.month").mean(dim="time", skipna=True) dset_all_over_season1_mean = dset_all_over_monthly_mean.sel(month=[1,2,3]) dset_all_over_season1_mean.mean(dim="month",skipna=True) dset_all_over_season1_mean.to_netcdf("/data/Environmental_Data/dump/mean/all_over_season1_mean_ssh_copernicus_0.25deg_season1_data_mean.nc") ``` |
{
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Limiting threads/cores used by xarray(/dask?) 361016974 | |
| 460292772 | https://github.com/pydata/xarray/issues/2417#issuecomment-460292772 | https://api.github.com/repos/pydata/xarray/issues/2417 | MDEyOklzc3VlQ29tbWVudDQ2MDI5Mjc3Mg== | andytraumueller 10809480 | 2019-02-04T15:34:04Z | 2019-02-04T15:34:04Z | NONE | i am also interest, I am running a lot of critical processes and I want to at least have 5 cores idleing. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Limiting threads/cores used by xarray(/dask?) 361016974 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
issue 2