issue_comments
1 row where author_association = "NONE", issue = 94787306 and user = 4992424 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- add scatter plot method to dataset · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 304107683 | https://github.com/pydata/xarray/issues/470#issuecomment-304107683 | https://api.github.com/repos/pydata/xarray/issues/470 | MDEyOklzc3VlQ29tbWVudDMwNDEwNzY4Mw== | darothen 4992424 | 2017-05-25T19:57:22Z | 2017-05-25T19:57:22Z | NONE | This certainly could be useful, but since this is essentially plotting a vector of data, why not just drop into pandas? ``` df = da.to_dataframe() Could reset coordinates if you really wanteddf = df.reset_index()df.plot.scatter('longitude', 'latitude', c=da.name) ``` Patching in this rough functionality into the plotting module should be really straightforward, maybe @jhamman has some tips? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
add scatter plot method to dataset 94787306 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1