issue_comments
1 row where author_association = "NONE", issue = 480753417 and user = 22670878 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Feature request: time-based rolling window functionality · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
618006150 | https://github.com/pydata/xarray/issues/3216#issuecomment-618006150 | https://api.github.com/repos/pydata/xarray/issues/3216 | MDEyOklzc3VlQ29tbWVudDYxODAwNjE1MA== | mattrossman 22670878 | 2020-04-22T19:58:30Z | 2020-04-22T19:58:30Z | NONE | I'm surprised this feature still hasn't made its way from pandas to xarray, it's incredibly helpful for datasets that are not evenly sampled. Resampling and calculating the integer window size feels unnecessary for the end goal. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Feature request: time-based rolling window functionality 480753417 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1