issue_comments
5 rows where author_association = "NONE", issue = 453576041 and user = 21049064 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- assign values from `xr.groupby_bins` to new `variable` · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
508995157 | https://github.com/pydata/xarray/issues/3004#issuecomment-508995157 | https://api.github.com/repos/pydata/xarray/issues/3004 | MDEyOklzc3VlQ29tbWVudDUwODk5NTE1Nw== | tommylees112 21049064 | 2019-07-07T12:17:45Z | 2019-07-07T12:17:45Z | NONE | Perfect thankyou! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
assign values from `xr.groupby_bins` to new `variable` 453576041 | |
500165601 | https://github.com/pydata/xarray/issues/3004#issuecomment-500165601 | https://api.github.com/repos/pydata/xarray/issues/3004 | MDEyOklzc3VlQ29tbWVudDUwMDE2NTYwMQ== | tommylees112 21049064 | 2019-06-08T21:28:34Z | 2019-06-08T21:28:34Z | NONE | The best way I have found so far is:
Which returns:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
assign values from `xr.groupby_bins` to new `variable` 453576041 | |
499959555 | https://github.com/pydata/xarray/issues/3004#issuecomment-499959555 | https://api.github.com/repos/pydata/xarray/issues/3004 | MDEyOklzc3VlQ29tbWVudDQ5OTk1OTU1NQ== | tommylees112 21049064 | 2019-06-07T16:53:55Z | 2019-06-08T21:11:46Z | NONE | So if I want them separated into 5 percentiles
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
assign values from `xr.groupby_bins` to new `variable` 453576041 | |
499961306 | https://github.com/pydata/xarray/issues/3004#issuecomment-499961306 | https://api.github.com/repos/pydata/xarray/issues/3004 | MDEyOklzc3VlQ29tbWVudDQ5OTk2MTMwNg== | tommylees112 21049064 | 2019-06-07T16:59:12Z | 2019-06-07T16:59:12Z | NONE | Also how do I assign the result of the
Gives me the error message: ``` ValueError Traceback (most recent call last) <ipython-input-6-0c8328bf2f77> in <module> ----> 1 decile_index_gpby = rank_norm.groupby_bins('rank_norm', bins=bins, labels=bin_labels) 2 decile_index_gpby.assign() # assign_coords() ~/miniconda3/lib/python3.7/site-packages/xarray/core/common.py in groupby_bins(self, group, bins, right, labels, precision, include_lowest, squeeze) 529 cut_kwargs={'right': right, 'labels': labels, 530 'precision': precision, --> 531 'include_lowest': include_lowest}) 532 533 def rolling(self, dim=None, min_periods=None, center=False, **dim_kwargs): ~/miniconda3/lib/python3.7/site-packages/xarray/core/groupby.py in init(self, obj, group, squeeze, grouper, bins, cut_kwargs) 249 250 if bins is not None: --> 251 binned = pd.cut(group.values, bins, **cut_kwargs) 252 new_dim_name = group.name + '_bins' 253 group = DataArray(binned, group.coords, name=new_dim_name) ~/miniconda3/lib/python3.7/site-packages/pandas/core/reshape/tile.py in cut(x, bins, right, labels, retbins, precision, include_lowest, duplicates) 239 include_lowest=include_lowest, 240 dtype=dtype, --> 241 duplicates=duplicates) 242 243 return _postprocess_for_cut(fac, bins, retbins, x_is_series, ~/miniconda3/lib/python3.7/site-packages/pandas/core/reshape/tile.py in _bins_to_cuts(x, bins, right, labels, precision, include_lowest, dtype, duplicates) 357 else: 358 if len(labels) != len(bins) - 1: --> 359 raise ValueError('Bin labels must be one fewer than ' 360 'the number of bin edges') 361 if not is_categorical_dtype(labels): ValueError: Bin labels must be one fewer than the number of bin edges In [7]: bin_labels = ['20', '40', '60', '80'] ...: decile_index_gpby = rank_norm.groupby_bins('rank_norm', bins=bins, labels=bin_labels) ...: decile_index_gpby.assign() # assign_coords() ...: IndexError Traceback (most recent call last) <ipython-input-7-a4ba78018478> in <module> 1 bin_labels = ['20', '40', '60', '80'] 2 decile_index_gpby = rank_norm.groupby_bins('rank_norm', bins=bins, labels=bin_labels) ----> 3 decile_index_gpby.assign() # assign_coords() ~/miniconda3/lib/python3.7/site-packages/xarray/core/groupby.py in assign(self, kwargs) 772 Dataset.assign 773 """ --> 774 return self.apply(lambda ds: ds.assign(kwargs)) 775 776 ~/miniconda3/lib/python3.7/site-packages/xarray/core/groupby.py in apply(self, func, args, kwargs) 684 kwargs.pop('shortcut', None) # ignore shortcut if set (for now) 685 applied = (func(ds, *args, kwargs) for ds in self._iter_grouped()) --> 686 return self._combine(applied) 687 688 def _combine(self, applied): ~/miniconda3/lib/python3.7/site-packages/xarray/core/groupby.py in _combine(self, applied) 691 coord, dim, positions = self._infer_concat_args(applied_example) 692 combined = concat(applied, dim) --> 693 combined = _maybe_reorder(combined, dim, positions) 694 if coord is not None: 695 combined[coord.name] = coord ~/miniconda3/lib/python3.7/site-packages/xarray/core/groupby.py in _maybe_reorder(xarray_obj, dim, positions) 468 469 def _maybe_reorder(xarray_obj, dim, positions): --> 470 order = _inverse_permutation_indices(positions) 471 472 if order is None: ~/miniconda3/lib/python3.7/site-packages/xarray/core/groupby.py in _inverse_permutation_indices(positions) 110 positions = [np.arange(sl.start, sl.stop, sl.step) for sl in positions] 111 --> 112 indices = nputils.inverse_permutation(np.concatenate(positions)) 113 return indices 114 ~/miniconda3/lib/python3.7/site-packages/xarray/core/nputils.py in inverse_permutation(indices) 58 # use intp instead of int64 because of windows :( 59 inverse_permutation = np.empty(len(indices), dtype=np.intp) ---> 60 inverse_permutation[indices] = np.arange(len(indices), dtype=np.intp) 61 return inverse_permutation 62 IndexError: index 1204 is out of bounds for axis 0 with size 1000 ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
assign values from `xr.groupby_bins` to new `variable` 453576041 | |
499958420 | https://github.com/pydata/xarray/issues/3004#issuecomment-499958420 | https://api.github.com/repos/pydata/xarray/issues/3004 | MDEyOklzc3VlQ29tbWVudDQ5OTk1ODQyMA== | tommylees112 21049064 | 2019-06-07T16:50:36Z | 2019-06-07T16:50:36Z | NONE | Why does the number of bin labels have to be one less than the number of bins? ``` bin_labels = ['20', '40', '60', '80', '100'] decile_index_gpby = rank_norm.groupby_bins('rank_norm', bins=bins, labels=bin_labels) Out[]: ValueError: Bin labels must be one fewer than the number of bin edges ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
assign values from `xr.groupby_bins` to new `variable` 453576041 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1