issue_comments
4 rows where author_association = "NONE", issue = 399309171 and user = 15742456 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Reshape function works only for numpy array and raise error with xarray variable. · 4 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 455951765 | https://github.com/pydata/xarray/issues/2676#issuecomment-455951765 | https://api.github.com/repos/pydata/xarray/issues/2676 | MDEyOklzc3VlQ29tbWVudDQ1NTk1MTc2NQ== | ahmedshaaban1 15742456 | 2019-01-21T05:22:34Z | 2019-01-21T05:22:34Z | NONE | @dcherian Thanks a lot. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Reshape function works only for numpy array and raise error with xarray variable. 399309171 | |
| 455909733 | https://github.com/pydata/xarray/issues/2676#issuecomment-455909733 | https://api.github.com/repos/pydata/xarray/issues/2676 | MDEyOklzc3VlQ29tbWVudDQ1NTkwOTczMw== | ahmedshaaban1 15742456 | 2019-01-20T22:45:15Z | 2019-01-20T22:45:15Z | NONE | Any idea if Xarray will incorporate more Numpy/Scipy functions in the future. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Reshape function works only for numpy array and raise error with xarray variable. 399309171 | |
| 455906272 | https://github.com/pydata/xarray/issues/2676#issuecomment-455906272 | https://api.github.com/repos/pydata/xarray/issues/2676 | MDEyOklzc3VlQ29tbWVudDQ1NTkwNjI3Mg== | ahmedshaaban1 15742456 | 2019-01-20T21:56:54Z | 2019-01-20T21:56:54Z | NONE | Thanks ... I am wondering if I used Numpy/Scipy functions on Xarray.data, will such computation is performed under the umbrella of Dask (Lazy evaluation)? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Reshape function works only for numpy array and raise error with xarray variable. 399309171 | |
| 455328352 | https://github.com/pydata/xarray/issues/2676#issuecomment-455328352 | https://api.github.com/repos/pydata/xarray/issues/2676 | MDEyOklzc3VlQ29tbWVudDQ1NTMyODM1Mg== | ahmedshaaban1 15742456 | 2019-01-17T20:54:17Z | 2019-01-17T20:55:48Z | NONE | Thanks a lot for your answer. I am a novice to Xarray, and I am a heavy user of NumPy. Numpy FFT function works fine with Xarray variables, yet it returns NumPy array. NumPy reshape function, as mentioned above, does not work with Xarray variable. I am not yet able to get the big picture of how to use the power of Xarray and at the same time be able to use the math/statistics function of Numpy/SciPy. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Reshape function works only for numpy array and raise error with xarray variable. 399309171 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1