issue_comments
1 row where author_association = "NONE", issue = 384002323 and user = 1200058 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- np.clip() executes eagerly · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 454164876 | https://github.com/pydata/xarray/issues/2570#issuecomment-454164876 | https://api.github.com/repos/pydata/xarray/issues/2570 | MDEyOklzc3VlQ29tbWVudDQ1NDE2NDg3Ng== | Hoeze 1200058 | 2019-01-14T21:18:03Z | 2019-01-14T21:18:03Z | NONE | @max-sixty IMHO this issue should be kept open: 1) it is still not fixed 2) it can be fixed with an upcoming version of NumPy I'd rather add some TODO tag or similar to this issue |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
np.clip() executes eagerly 384002323 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1