home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

7 rows where author_association = "NONE", issue = 373121666 and user = 1872600 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • rsignell-usgs · 7 ✖

issue 1

  • Problems with distributed and opendap netCDF endpoint · 7 ✖

author_association 1

  • NONE · 7 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
432743208 https://github.com/pydata/xarray/issues/2503#issuecomment-432743208 https://api.github.com/repos/pydata/xarray/issues/2503 MDEyOklzc3VlQ29tbWVudDQzMjc0MzIwOA== rsignell-usgs 1872600 2018-10-24T17:02:34Z 2018-10-24T17:02:34Z NONE

The version that is working in @rabernat's esgf binder env is: libnetcdf 4.6.1 h9cd6fdc_11 conda-forge

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Problems with distributed and opendap netCDF endpoint 373121666
432706068 https://github.com/pydata/xarray/issues/2503#issuecomment-432706068 https://api.github.com/repos/pydata/xarray/issues/2503 MDEyOklzc3VlQ29tbWVudDQzMjcwNjA2OA== rsignell-usgs 1872600 2018-10-24T15:27:33Z 2018-10-24T15:27:33Z NONE

I fired up my notebook on @rabernat's binder env and it worked fine also: https://nbviewer.jupyter.org/gist/rsignell-usgs/aebdac44a1d773b99673cb132c2ef5eb

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Problems with distributed and opendap netCDF endpoint 373121666
432416114 https://github.com/pydata/xarray/issues/2503#issuecomment-432416114 https://api.github.com/repos/pydata/xarray/issues/2503 MDEyOklzc3VlQ29tbWVudDQzMjQxNjExNA== rsignell-usgs 1872600 2018-10-23T20:55:42Z 2018-10-23T20:55:42Z NONE

@lesserwhirls , is this the issue you are referring to? https://github.com/Unidata/netcdf4-python/issues/836

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Problems with distributed and opendap netCDF endpoint 373121666
432415704 https://github.com/pydata/xarray/issues/2503#issuecomment-432415704 https://api.github.com/repos/pydata/xarray/issues/2503 MDEyOklzc3VlQ29tbWVudDQzMjQxNTcwNA== rsignell-usgs 1872600 2018-10-23T20:54:24Z 2018-10-23T20:54:24Z NONE

@jhamman, doesn't this dask status plot tell us that multiple workers are connecting and getting data?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Problems with distributed and opendap netCDF endpoint 373121666
432389980 https://github.com/pydata/xarray/issues/2503#issuecomment-432389980 https://api.github.com/repos/pydata/xarray/issues/2503 MDEyOklzc3VlQ29tbWVudDQzMjM4OTk4MA== rsignell-usgs 1872600 2018-10-23T19:39:09Z 2018-10-23T19:39:09Z NONE

Perhaps it's also worth mentioning that I don't see any errors on the THREDDS server side on either the tomcat catalina or thredds threddsServlet logs. @lesserwhirls, any ideas?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Problems with distributed and opendap netCDF endpoint 373121666
432374559 https://github.com/pydata/xarray/issues/2503#issuecomment-432374559 https://api.github.com/repos/pydata/xarray/issues/2503 MDEyOklzc3VlQ29tbWVudDQzMjM3NDU1OQ== rsignell-usgs 1872600 2018-10-23T18:53:28Z 2018-10-23T19:39:08Z NONE

FWIW, in my workflow there was nothing fundamentally wrong, meaning that the requests worked for a while, but eventually would die with the NetCDF: Malformed or inaccessible DAP DDS message.

So for just a short time period (in this case 50 time steps, 2 chunks in time), it would usually work: https://nbviewer.jupyter.org/gist/rsignell-usgs/1155c76ed3440858ced8132e4cd81df4

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Problems with distributed and opendap netCDF endpoint 373121666
432367931 https://github.com/pydata/xarray/issues/2503#issuecomment-432367931 https://api.github.com/repos/pydata/xarray/issues/2503 MDEyOklzc3VlQ29tbWVudDQzMjM2NzkzMQ== rsignell-usgs 1872600 2018-10-23T18:34:48Z 2018-10-23T19:18:52Z NONE

I tried a similar workflow last week with an AWS kubernetes cluster with opendap endpoints and it also failed: https://nbviewer.jupyter.org/gist/rsignell-usgs/8583ea8f8b5e1c926b0409bd536095a9

I thought it was likely some intermittent problem that wasn't handled well. In my case after a while I get: distributed.worker - WARNING - Compute Failed Function: getter args: (ImplicitToExplicitIndexingAdapter(array=CopyOnWriteArray(array=LazilyOuterIndexedArray(array=_ElementwiseFunctionArray(LazilyOuterIndexedArray(array=<xarray.backends.netCDF4_.NetCDF4ArrayWrapper object at 0x7ff93cbbd828>, key=BasicIndexer((slice(None, None, None), slice(None, None, None), slice(None, None, None), slice(None, None, None)))), func=functools.partial(<function _apply_mask at 0x7ff945421378>, encoded_fill_values={1e+37}, decoded_fill_value=nan, dtype=dtype('float64')), dtype=dtype('float64')), key=BasicIndexer((slice(None, None, None), slice(None, None, None), slice(None, None, None), slice(None, None, None)))))), (slice(375, 400, None), slice(0, 7, None), slice(0, 670, None), slice(0, 300, None))) kwargs: {} Exception: OSError(-72, 'NetCDF: Malformed or inaccessible DAP DDS')

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Problems with distributed and opendap netCDF endpoint 373121666

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 20.066ms · About: xarray-datasette