issue_comments
1 row where author_association = "NONE", issue = 365973662 and user = 5442433 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Stack + to_array before to_xarray is much faster that a simple to_xarray · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
648721465 | https://github.com/pydata/xarray/issues/2459#issuecomment-648721465 | https://api.github.com/repos/pydata/xarray/issues/2459 | MDEyOklzc3VlQ29tbWVudDY0ODcyMTQ2NQ== | brey 5442433 | 2020-06-24T09:55:00Z | 2020-06-24T09:55:00Z | NONE | Hi All. I stumble across the same issue trying to convert a 5000 column dataframe to xarray (it was never going to happen...). I found a workaround and I am posting the test below. Hope it helps. ```python import xarray as xr import pandas as pd import numpy as np xr.version
pd.version
df = pd.DataFrame(np.random.randn(200, 500)) %%time one = df.to_xarray()
%%time dic={} for name in df.columns: dic.update({name:(['index'],df[name].values)}) two = xr.Dataset(dic, coords={'index': ('index', df.index.values)})
one.equals(two)
``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Stack + to_array before to_xarray is much faster that a simple to_xarray 365973662 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1