issue_comments
1 row where author_association = "NONE", issue = 365973662 and user = 5442433 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Stack + to_array before to_xarray is much faster that a simple to_xarray · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 648721465 | https://github.com/pydata/xarray/issues/2459#issuecomment-648721465 | https://api.github.com/repos/pydata/xarray/issues/2459 | MDEyOklzc3VlQ29tbWVudDY0ODcyMTQ2NQ== | brey 5442433 | 2020-06-24T09:55:00Z | 2020-06-24T09:55:00Z | NONE | Hi All. I stumble across the same issue trying to convert a 5000 column dataframe to xarray (it was never going to happen...). I found a workaround and I am posting the test below. Hope it helps. ```python import xarray as xr import pandas as pd import numpy as np xr.version
pd.version
df = pd.DataFrame(np.random.randn(200, 500)) %%time one = df.to_xarray()
%%time dic={} for name in df.columns: dic.update({name:(['index'],df[name].values)}) two = xr.Dataset(dic, coords={'index': ('index', df.index.values)})
one.equals(two)
``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Stack + to_array before to_xarray is much faster that a simple to_xarray 365973662 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1