home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

6 rows where author_association = "NONE" and issue = 363326726 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 3

  • hafez-ahmad 4
  • jsta 1
  • sbiner 1

issue 1

  • xarray potential inconstistencies with cftime · 6 ✖

author_association 1

  • NONE · 6 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
866121675 https://github.com/pydata/xarray/issues/2437#issuecomment-866121675 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDg2NjEyMTY3NQ== jsta 7844578 2021-06-22T16:07:36Z 2021-06-22T17:01:35Z NONE

I believe the dates assocsiated with this particular dataset are days since "1700-01-01"

86287 == 1936-04-01

python ds["time"] = ds.time.assign_attrs(units="days since 1700-01-01") ds = xr.decode_cf(ds)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726
787289605 https://github.com/pydata/xarray/issues/2437#issuecomment-787289605 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDc4NzI4OTYwNQ== hafez-ahmad 20365917 2021-02-28T03:43:05Z 2021-02-28T03:43:05Z NONE

@spencerkclark 67935 67966 67994 ... 115355 115385 are actually time. But they are stored aa integer. I like to convert all integer to date. My attached data has exact same time.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726
787067778 https://github.com/pydata/xarray/issues/2437#issuecomment-787067778 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDc4NzA2Nzc3OA== hafez-ahmad 20365917 2021-02-27T12:47:37Z 2021-02-27T12:47:37Z NONE

@spencerkclark I like to convert datetime. My dataset time is not familiar. It looks like 456852,85993, is there anyvway to convert 456852 to dmy [01-01-2020]?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726
786687078 https://github.com/pydata/xarray/issues/2437#issuecomment-786687078 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDc4NjY4NzA3OA== hafez-ahmad 20365917 2021-02-26T14:39:56Z 2021-02-26T14:39:56Z NONE

Here screenshot of my data here dataset link https://portal.grdc.bafg.de/grdcdownload/external/d94b2ca6-90c3-4220-b0ae-03250f809afe/2021-02-26_08-30.zip I like to convert julian date to normal calendar datetime like (22-01-2020)

thank you Hafez

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726
786548329 https://github.com/pydata/xarray/issues/2437#issuecomment-786548329 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDc4NjU0ODMyOQ== hafez-ahmad 20365917 2021-02-26T10:08:47Z 2021-02-26T10:08:47Z NONE

How can I canvert julian to dmy index or datetime in pandas? , I have following dataset Dimensions: id: 170time: 1560 Coordinates: time (time) int64 67935 67966 67994 ... 115355 115385 array([ 67935, 67966, 67994, ..., 115324, 115355, 115385], dtype=int64)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726
424439785 https://github.com/pydata/xarray/issues/2437#issuecomment-424439785 https://api.github.com/repos/pydata/xarray/issues/2437 MDEyOklzc3VlQ29tbWVudDQyNDQzOTc4NQ== sbiner 16655388 2018-09-25T17:53:01Z 2018-09-25T17:53:01Z NONE

@spencerkclark I made tests with enable_cftimeindex=True and noticed I got an error. I did not fit my need but on second thought it's probably better to have this than unexpected resample behaviour, escpecially if we use it to upsample (i.e. from lower frequency toward higher).

Thanks for the complete answer.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray potential inconstistencies with cftime 363326726

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 37.082ms · About: xarray-datasette