home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

10 rows where author_association = "NONE" and issue = 350899839 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 6

  • nordam 2
  • maxaragon 2
  • ognancy4life 2
  • ronygolderku 2
  • rsignell-usgs 1
  • blaylockbk 1

issue 1

  • Let's list all the netCDF files that xarray can't open · 10 ✖

author_association 1

  • NONE · 10 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1382724561 https://github.com/pydata/xarray/issues/2368#issuecomment-1382724561 https://api.github.com/repos/pydata/xarray/issues/2368 IC_kwDOAMm_X85SarPR ronygolderku 64892520 2023-01-14T12:11:03Z 2023-01-14T12:11:03Z NONE

@ronygolderku thanks for your example. Looks like it fails for the same reason as was mentioned for some of the other examples above.

Is there any solution?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839
1382669848 https://github.com/pydata/xarray/issues/2368#issuecomment-1382669848 https://api.github.com/repos/pydata/xarray/issues/2368 IC_kwDOAMm_X85Sad4Y ronygolderku 64892520 2023-01-14T05:56:44Z 2023-01-14T05:56:44Z NONE

found this one, The dataset was given based on request. That's why... Anyway, anybody want to check, you can find this polar front

data = xr.open_dataset("C:/Users/admin/Downloads/CTOH_PolarFront_weekly_1993_2019.nc")

Output.

``` MissingDimensionsError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_9796\2161474679.py in <module> ----> 1 data = xr.open_dataset("C:/Users/admin/Downloads/CTOH_PolarFront_weekly_1993_2019.nc")

~\anaconda3\lib\site-packages\xarray\backends\api.py in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, backend_kwargs, args, *kwargs) 493 494 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None) --> 495 backend_ds = backend.open_dataset( 496 filename_or_obj, 497 drop_variables=drop_variables,

~\anaconda3\lib\site-packages\xarray\backends\netCDF4_.py in open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, format, clobber, diskless, persist, lock, autoclose) 562 store_entrypoint = StoreBackendEntrypoint() 563 with close_on_error(store): --> 564 ds = store_entrypoint.open_dataset( 565 store, 566 mask_and_scale=mask_and_scale,

~\anaconda3\lib\site-packages\xarray\backends\store.py in open_dataset(self, store, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta) 37 ) 38 ---> 39 ds = Dataset(vars, attrs=attrs) 40 ds = ds.set_coords(coord_names.intersection(vars)) 41 ds.set_close(store.close)

~\anaconda3\lib\site-packages\xarray\core\dataset.py in init(self, data_vars, coords, attrs) 749 coords = coords.variables 750 --> 751 variables, coord_names, dims, indexes, _ = merge_data_and_coords( 752 data_vars, coords, compat="broadcast_equals" 753 )

~\anaconda3\lib\site-packages\xarray\core\merge.py in merge_data_and_coords(data, coords, compat, join) 486 explicit_coords = coords.keys() 487 indexes = dict(_extract_indexes_from_coords(coords)) --> 488 return merge_core( 489 objects, compat, join, explicit_coords=explicit_coords, indexes=indexes 490 )

~\anaconda3\lib\site-packages\xarray\core\merge.py in merge_core(objects, compat, join, combine_attrs, priority_arg, explicit_coords, indexes, fill_value) 635 coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value 636 ) --> 637 collected = collect_variables_and_indexes(aligned) 638 639 prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat)

~\anaconda3\lib\site-packages\xarray\core\merge.py in collect_variables_and_indexes(list_of_mappings) 294 append_all(coords, indexes) 295 --> 296 variable = as_variable(variable, name=name) 297 298 if variable.dims == (name,):

~\anaconda3\lib\site-packages\xarray\core\variable.py in as_variable(obj, name) 156 # convert the Variable into an Index 157 if obj.ndim != 1: --> 158 raise MissingDimensionsError( 159 f"{name!r} has more than 1-dimension and the same name as one of its " 160 f"dimensions {obj.dims!r}. xarray disallows such variables because they "

MissingDimensionsError: 'longitude' has more than 1-dimension and the same name as one of its dimensions ('time', 'longitude'). xarray disallows such variables because they conflict with the coordinates used to label dimensions. ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839
1320993705 https://github.com/pydata/xarray/issues/2368#issuecomment-1320993705 https://api.github.com/repos/pydata/xarray/issues/2368 IC_kwDOAMm_X85OvMOp maxaragon 39450418 2022-11-19T23:46:35Z 2022-11-20T13:31:45Z NONE

Found another example from ICON NWP model. Files open with netCDF4 library but not with xarray.

import pandas as pd
import xarray as xr
import requests
import os

response = requests.get('https://cloudnet.fmi.fi/api/model-files?site=hyytiala&date=2020-08-25&model=icon-iglo-12-23')
data = response.json()
df = pd.DataFrame(data)
file = df.downloadUrl
for i in file:
    wget.download(i, os.getcwd())

ds = xr.open_dataset('20200825_hyytiala_icon-iglo-12-23.nc')

Error:

```

TypeError Traceback (most recent call last) Cell In [109], line 1 ----> 1 ds = xr.open_dataset('20200825_hyytiala_icon-iglo-12-23.nc')

File ~/.virtualenvs/INAR/lib/python3.10/site-packages/xarray/backends/api.py:531, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, inline_array, backend_kwargs, kwargs) 519 decoders = _resolve_decoders_kwargs( 520 decode_cf, 521 open_backend_dataset_parameters=backend.open_dataset_parameters, (...) 527 decode_coords=decode_coords, 528 ) 530 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None) --> 531 backend_ds = backend.open_dataset( 532 filename_or_obj, 533 drop_variables=drop_variables, 534 decoders, 535 kwargs, 536 ) 537 ds = _dataset_from_backend_dataset( 538 backend_ds, 539 filename_or_obj, (...) 547 kwargs, 548 ) 549 return ds

File ~/.virtualenvs/INAR/lib/python3.10/site-packages/xarray/backends/netCDF4_.py:569, in NetCDF4BackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, format, clobber, diskless, persist, lock, autoclose) 567 store_entrypoint = StoreBackendEntrypoint() 568 with close_on_error(store): --> 569 ds = store_entrypoint.open_dataset( 570 store, 571 mask_and_scale=mask_and_scale, 572 decode_times=decode_times, 573 concat_characters=concat_characters, 574 decode_coords=decode_coords, 575 drop_variables=drop_variables, 576 use_cftime=use_cftime, 577 decode_timedelta=decode_timedelta, 578 ) 579 return ds

File ~/.virtualenvs/INAR/lib/python3.10/site-packages/xarray/backends/store.py:29, in StoreBackendEntrypoint.open_dataset(self, store, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta) 26 vars, attrs = store.load() 27 encoding = store.get_encoding() ---> 29 vars, attrs, coord_names = conventions.decode_cf_variables( 30 vars, 31 attrs, 32 mask_and_scale=mask_and_scale, 33 decode_times=decode_times, 34 concat_characters=concat_characters, 35 decode_coords=decode_coords, 36 drop_variables=drop_variables, 37 use_cftime=use_cftime, 38 decode_timedelta=decode_timedelta, 39 ) 41 ds = Dataset(vars, attrs=attrs) 42 ds = ds.set_coords(coord_names.intersection(vars))

File ~/.virtualenvs/INAR/lib/python3.10/site-packages/xarray/conventions.py:509, in decode_cf_variables(variables, attributes, concat_characters, mask_and_scale, decode_times, decode_coords, drop_variables, use_cftime, decode_timedelta) 507 # Time bounds coordinates might miss the decoding attributes 508 if decode_times: --> 509 _update_bounds_attributes(variables) 511 new_vars = {} 512 for k, v in variables.items():

File ~/.virtualenvs/INAR/lib/python3.10/site-packages/xarray/conventions.py:410, in _update_bounds_attributes(variables) 408 for v in variables.values(): 409 attrs = v.attrs --> 410 has_date_units = "units" in attrs and "since" in attrs["units"] 411 if has_date_units and "bounds" in attrs: 412 if attrs["bounds"] in variables:

TypeError: argument of type 'numpy.float32' is not iterable ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839
1320996459 https://github.com/pydata/xarray/issues/2368#issuecomment-1320996459 https://api.github.com/repos/pydata/xarray/issues/2368 IC_kwDOAMm_X85OvM5r maxaragon 39450418 2022-11-20T00:06:17Z 2022-11-20T00:06:17Z NONE

@andersy005 indeed, I have updated xarray and works now, previous version was:

``` INSTALLED VERSIONS


commit: None python: 3.10.6 (main, Aug 30 2022, 04:58:14) [Clang 13.1.6 (clang-1316.0.21.2.5)] python-bits: 64 OS: Darwin OS-release: 21.6.0 machine: arm64 processor: i386 byteorder: little LC_ALL: None LANG: None LOCALE: (None, 'UTF-8') libhdf5: 1.12.2 libnetcdf: 4.9.0

xarray: 2022.6.0 pandas: 1.4.4 numpy: 1.23.2 scipy: 1.9.1 netCDF4: 1.6.0 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.6.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.5 dask: None distributed: None matplotlib: 3.5.3 cartopy: None seaborn: 0.12.1 numbagg: None fsspec: None cupy: None pint: None sparse: None flox: None numpy_groupies: None setuptools: 63.4.3 pip: 22.2.2 conda: None pytest: None IPython: 8.5.0 sphinx: None ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839
800374879 https://github.com/pydata/xarray/issues/2368#issuecomment-800374879 https://api.github.com/repos/pydata/xarray/issues/2368 MDEyOklzc3VlQ29tbWVudDgwMDM3NDg3OQ== ognancy4life 59902324 2021-03-16T15:42:25Z 2021-03-16T15:42:25Z NONE

@dcherian Thanks for your reply. I think I understand the issue. What, specifically, do you suggest to fix this issue in my own code considering this is not a dataset I generated?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839
785298202 https://github.com/pydata/xarray/issues/2368#issuecomment-785298202 https://api.github.com/repos/pydata/xarray/issues/2368 MDEyOklzc3VlQ29tbWVudDc4NTI5ODIwMg== ognancy4life 59902324 2021-02-24T18:54:35Z 2021-02-24T18:56:11Z NONE

Found one! https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0191304/ The dataset published in Bushinsky et al. (2019), which is basically the Landshutzer et al. (2014) climatology plus SOCCOM Float-based pCO2 data, and updated through 2018. I've only tried the first file in the list (https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0191304/MPI-SOM_FFN_SOCCOMv2018.nc), but suspect the others will have the same issue. Here's the error (sounds like you all have discussed before, but I can't see an easy answer):

```

MissingDimensionsError Traceback (most recent call last) <ipython-input-4-9e0af51f1c05> in <module> ----> 1 SOMFFN = xr.open_dataset('MPI-SOM_FFN_SOCCOMv2018.nc')

~/opt/anaconda3/lib/python3.8/site-packages/xarray/backends/api.py in open_dataset(filename_or_obj, group, decode_cf, mask_and_scale, decode_times, autoclose, concat_characters, decode_coords, engine, chunks, lock, cache, drop_variables, backend_kwargs, use_cftime, decode_timedelta) 573 574 with close_on_error(store): --> 575 ds = maybe_decode_store(store, chunks) 576 577 # Ensure source filename always stored in dataset object (GH issue #2550)

~/opt/anaconda3/lib/python3.8/site-packages/xarray/backends/api.py in maybe_decode_store(store, chunks) 469 470 def maybe_decode_store(store, chunks): --> 471 ds = conventions.decode_cf( 472 store, 473 mask_and_scale=mask_and_scale,

~/opt/anaconda3/lib/python3.8/site-packages/xarray/conventions.py in decode_cf(obj, concat_characters, mask_and_scale, decode_times, decode_coords, drop_variables, use_cftime, decode_timedelta) 598 decode_timedelta=decode_timedelta, 599 ) --> 600 ds = Dataset(vars, attrs=attrs) 601 ds = ds.set_coords(coord_names.union(extra_coords).intersection(vars)) 602 ds._file_obj = file_obj

~/opt/anaconda3/lib/python3.8/site-packages/xarray/core/dataset.py in init(self, data_vars, coords, attrs) 628 coords = coords.variables 629 --> 630 variables, coord_names, dims, indexes, _ = merge_data_and_coords( 631 data_vars, coords, compat="broadcast_equals" 632 )

~/opt/anaconda3/lib/python3.8/site-packages/xarray/core/merge.py in merge_data_and_coords(data, coords, compat, join) 465 explicit_coords = coords.keys() 466 indexes = dict(_extract_indexes_from_coords(coords)) --> 467 return merge_core( 468 objects, compat, join, explicit_coords=explicit_coords, indexes=indexes 469 )

~/opt/anaconda3/lib/python3.8/site-packages/xarray/core/merge.py in merge_core(objects, compat, join, combine_attrs, priority_arg, explicit_coords, indexes, fill_value) 592 coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value 593 ) --> 594 collected = collect_variables_and_indexes(aligned) 595 596 prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat)

~/opt/anaconda3/lib/python3.8/site-packages/xarray/core/merge.py in collect_variables_and_indexes(list_of_mappings) 276 append_all(coords, indexes) 277 --> 278 variable = as_variable(variable, name=name) 279 if variable.dims == (name,): 280 variable = variable.to_index_variable()

~/opt/anaconda3/lib/python3.8/site-packages/xarray/core/variable.py in as_variable(obj, name) 152 # convert the Variable into an Index 153 if obj.ndim != 1: --> 154 raise MissingDimensionsError( 155 "%r has more than 1-dimension and the same name as one of its " 156 "dimensions %r. xarray disallows such variables because they "

MissingDimensionsError: 'date' has more than 1-dimension and the same name as one of its dimensions ('time', 'date'). xarray disallows such variables because they conflict with the coordinates used to label dimensions. ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839
580442427 https://github.com/pydata/xarray/issues/2368#issuecomment-580442427 https://api.github.com/repos/pydata/xarray/issues/2368 MDEyOklzc3VlQ29tbWVudDU4MDQ0MjQyNw== blaylockbk 6249613 2020-01-30T20:21:30Z 2020-01-30T20:26:08Z NONE

Adding another example. While working through the Model Evaluation Tool (MET) tutorial, I created a NetCDF file with the tool, and wasn't able to open the file it created.

MissingDimensionsError: 'lat' has more than 1-dimension and the same name as one of its dimensions ('lat', 'lon'). xarray disallows such variables because they conflict with the coordinates used to label dimensions.

Sounds to me like the same error caused by https://github.com/pydata/xarray/issues/2233

Below is the .nc file contents with ncdump

```

ncdump sample_fcst_24L_2005080800V_12A.nc -h netcdf sample_fcst_24L_2005080800V_12A { dimensions: lat = 129 ; lon = 185 ; variables: float lat(lat, lon) ; lat:long_name = "latitude" ; lat:units = "degrees_north" ; lat:standard_name = "latitude" ; float lon(lat, lon) ; lon:long_name = "longitude" ; lon:units = "degrees_east" ; lon:standard_name = "longitude" ; float APCP_12(lat, lon) ; APCP_12:name = "APCP_12" ; APCP_12:long_name = "Total precipitation" ; APCP_12:level = "A12" ; APCP_12:units = "kg/m^2" ; APCP_12:_FillValue = -9999.f ; APCP_12:init_time = "20050807_000000" ; APCP_12:init_time_ut = "1123372800" ; APCP_12:valid_time = "20050808_000000" ; APCP_12:valid_time_ut = "1123459200" ; APCP_12:accum_time = "120000" ; APCP_12:accum_time_sec = 43200 ;

// global attributes: :MET_version = "V8.1.2" ; :MET_tool = "pcp_combine" ; :RunCommand = "Sum: 4 files with accumulations of 030000." ; :Projection = "Lambert Conformal" ; :hemisphere = "N" ; :scale_lat_1 = "25.000000" ; :scale_lat_2 = "25.000000" ; :lat_pin = "12.190000" ; :lon_pin = "-133.459000" ; :x_pin = "0.000000" ; :y_pin = "0.000000" ; :lon_orient = "-95.000000" ; :d_km = "40.635000" ; :r_km = "6371.200000" ; :nx = "185" ; :ny = "129 grid_points" ; }

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839
443304555 https://github.com/pydata/xarray/issues/2368#issuecomment-443304555 https://api.github.com/repos/pydata/xarray/issues/2368 MDEyOklzc3VlQ29tbWVudDQ0MzMwNDU1NQ== nordam 319297 2018-11-30T18:59:26Z 2018-11-30T18:59:26Z NONE

Indeed. An example file (1.1 MB) can be found here:

http://folk.ntnu.no/nordam/entrainment.nc

And the error message I get on trying to open this file is:

ValueError: 'z' has more than 1-dimension and the same name as one of its dimensions ('time', 'z', 'lat', 'lon'). xarray disallows such variables because they conflict with the coordinates used to label dimensions.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839
443227318 https://github.com/pydata/xarray/issues/2368#issuecomment-443227318 https://api.github.com/repos/pydata/xarray/issues/2368 MDEyOklzc3VlQ29tbWVudDQ0MzIyNzMxOA== rsignell-usgs 1872600 2018-11-30T14:53:13Z 2018-11-30T14:53:13Z NONE

@nordam , can you provide an example?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839
443218629 https://github.com/pydata/xarray/issues/2368#issuecomment-443218629 https://api.github.com/repos/pydata/xarray/issues/2368 MDEyOklzc3VlQ29tbWVudDQ0MzIxODYyOQ== nordam 319297 2018-11-30T14:25:00Z 2018-11-30T14:25:00Z NONE

Just adding that netCDF files produced as output from the GOTM turbulence model cannot be opened by xarray. I believe the reason is self-referential multidimensional coordinates.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Let's list all the netCDF files that xarray can't open 350899839

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 15.014ms · About: xarray-datasette