issue_comments
3 rows where author_association = "NONE" and issue = 344614881 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Example on using `preprocess` with `mfdataset` · 3 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1468024753 | https://github.com/pydata/xarray/issues/2313#issuecomment-1468024753 | https://api.github.com/repos/pydata/xarray/issues/2313 | IC_kwDOAMm_X85XgEex | husainridwan 61923007 | 2023-03-14T12:35:00Z | 2023-03-14T12:35:00Z | NONE | I'll like to work on this @TomNicholas, where do I start from? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Example on using `preprocess` with `mfdataset` 344614881 | |
| 1135302642 | https://github.com/pydata/xarray/issues/2313#issuecomment-1135302642 | https://api.github.com/repos/pydata/xarray/issues/2313 | IC_kwDOAMm_X85Dq1fy | jibcar 54370222 | 2022-05-24T01:31:22Z | 2022-05-24T01:31:22Z | NONE | Hello: I have to find maximum precipitation of each year (for example: 2007 and 2008, Dataset link are: 2007 and 2008). I have done this using resample method (i.e. Following along SO, I am wondering if I can use preprocess to find maximum (or minimum or average) for each file first and then concatenate it using time dimension. I tried the following code and was not successful. Can someone help me with this? ```import dask.array as da import numpy as np import xarray as xr from dask.distributed import Client client = Client() client def preprocess_func(ds): '''Get maximum (or minimum or average) from each file and concatenate along time''' return ds.precip.max('time') prec_ds=xr.open_mfdataset([prec_2007,prec_2008], chunks={"lat": 25,"lon": 25,"time": -1,}, preprocess=preprocess_func, concat_dim='time')``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Example on using `preprocess` with `mfdataset` 344614881 | |
| 1062761948 | https://github.com/pydata/xarray/issues/2313#issuecomment-1062761948 | https://api.github.com/repos/pydata/xarray/issues/2313 | IC_kwDOAMm_X84_WHXc | chuaxr 30007270 | 2022-03-09T10:13:09Z | 2022-03-09T10:13:09Z | NONE | Seconding @dcherian's comment in #4901 on an example for ```
On that note, the example above seems to work with some slight changes: ```
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Example on using `preprocess` with `mfdataset` 344614881 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 3