issue_comments
3 rows where author_association = "NONE" and issue = 344614881 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Example on using `preprocess` with `mfdataset` · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1468024753 | https://github.com/pydata/xarray/issues/2313#issuecomment-1468024753 | https://api.github.com/repos/pydata/xarray/issues/2313 | IC_kwDOAMm_X85XgEex | husainridwan 61923007 | 2023-03-14T12:35:00Z | 2023-03-14T12:35:00Z | NONE | I'll like to work on this @TomNicholas, where do I start from? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Example on using `preprocess` with `mfdataset` 344614881 | |
1135302642 | https://github.com/pydata/xarray/issues/2313#issuecomment-1135302642 | https://api.github.com/repos/pydata/xarray/issues/2313 | IC_kwDOAMm_X85Dq1fy | jibcar 54370222 | 2022-05-24T01:31:22Z | 2022-05-24T01:31:22Z | NONE | Hello: I have to find maximum precipitation of each year (for example: 2007 and 2008, Dataset link are: 2007 and 2008). I have done this using resample method (i.e. Following along SO, I am wondering if I can use preprocess to find maximum (or minimum or average) for each file first and then concatenate it using time dimension. I tried the following code and was not successful. Can someone help me with this? ```import dask.array as da import numpy as np import xarray as xr from dask.distributed import Client client = Client() client def preprocess_func(ds): '''Get maximum (or minimum or average) from each file and concatenate along time''' return ds.precip.max('time') prec_ds=xr.open_mfdataset([prec_2007,prec_2008], chunks={"lat": 25,"lon": 25,"time": -1,}, preprocess=preprocess_func, concat_dim='time')``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Example on using `preprocess` with `mfdataset` 344614881 | |
1062761948 | https://github.com/pydata/xarray/issues/2313#issuecomment-1062761948 | https://api.github.com/repos/pydata/xarray/issues/2313 | IC_kwDOAMm_X84_WHXc | chuaxr 30007270 | 2022-03-09T10:13:09Z | 2022-03-09T10:13:09Z | NONE | Seconding @dcherian's comment in #4901 on an example for ```
On that note, the example above seems to work with some slight changes: ```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Example on using `preprocess` with `mfdataset` 344614881 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3