issue_comments
1 row where author_association = "NONE", issue = 343659822 and user = 18679148 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- float32 instead of float64 when decoding int16 with scale_factor netcdf var using xarray · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
852069023 | https://github.com/pydata/xarray/issues/2304#issuecomment-852069023 | https://api.github.com/repos/pydata/xarray/issues/2304 | MDEyOklzc3VlQ29tbWVudDg1MjA2OTAyMw== | ACHMartin 18679148 | 2021-06-01T12:03:55Z | 2021-06-07T20:48:00Z | NONE | Dear all and thank you for your work on Xarray, Link to @magau comment, I have a netcdf with multiple variables in different format (float, short, byte). Using open_mfdataset 'short' and 'byte' are converted in 'float64' (no scaling, but some masking for the float data). It doesn't raise major issue for me, but it is taking plenty of memory space for nothing. Below an example of the 3 format from (ncdump -h):
And how they appear after opening in as xarray using open_mfdataset:
Is there any recommandation? Regards |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
float32 instead of float64 when decoding int16 with scale_factor netcdf var using xarray 343659822 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1