issue_comments
5 rows where author_association = "NONE", issue = 329438885 and user = 25231875 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- align() outer join returns DataArrays that are all NaNs · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
396953390 | https://github.com/pydata/xarray/issues/2215#issuecomment-396953390 | https://api.github.com/repos/pydata/xarray/issues/2215 | MDEyOklzc3VlQ29tbWVudDM5Njk1MzM5MA== | jjpr-mit 25231875 | 2018-06-13T14:16:19Z | 2018-06-13T14:17:46Z | NONE | @shoyer That did it. Under pandas 0.22, the DataArrays in |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
align() outer join returns DataArrays that are all NaNs 329438885 | |
394758682 | https://github.com/pydata/xarray/issues/2215#issuecomment-394758682 | https://api.github.com/repos/pydata/xarray/issues/2215 | MDEyOklzc3VlQ29tbWVudDM5NDc1ODY4Mg== | jjpr-mit 25231875 | 2018-06-05T15:42:15Z | 2018-06-05T16:23:12Z | NONE | I found a way to reproduce the error. One of the MuliIndex levels on the DataArrays has NaNs in it. If I remove that level, the correct values appear in the result. Should the presence of that MultiIndex level cause this behavior? ``` import string import numpy as np import xarray as xr dims = ("x", "y") shape = (10, 5) das = [] for j in (0, 1): data = np.full(shape, np.nan, dtype="float64") for i in range(shape[0]): data[i, i % shape[1]] = float(i) coords_d = { "ints": ("x", range(jshape[0], (j+1)shape[0])), "nans": ("x", np.array([np.nan] * shape[0], dtype="float64")), "lower": ("y", list(string.ascii_lowercase[:shape[1]])) } da = xr.DataArray(data=data, dims=dims, coords=coords_d) da.set_index(append=True, inplace=True, x=["ints", "nans"], y=["lower"]) das.append(da) nonzeros_raw = [np.nonzero(~np.isnan(da)) for da in das] print("nonzeros_raw: ") print(nonzeros_raw) aligned = xr.align(*das, join="outer") nonzeros_aligned = [np.nonzero(~np.isnan(da)) for da in aligned] print("nonzeros_aligned: ") print(nonzeros_aligned) assert nonzeros_raw[0].shape == nonzeros_aligned[0].shape ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
align() outer join returns DataArrays that are all NaNs 329438885 | |
394769300 | https://github.com/pydata/xarray/issues/2215#issuecomment-394769300 | https://api.github.com/repos/pydata/xarray/issues/2215 | MDEyOklzc3VlQ29tbWVudDM5NDc2OTMwMA== | jjpr-mit 25231875 | 2018-06-05T16:12:30Z | 2018-06-05T16:12:30Z | NONE | This is what I would expect to see returned by align():
I see something very similar, but with the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
align() outer join returns DataArrays that are all NaNs 329438885 | |
394765054 | https://github.com/pydata/xarray/issues/2215#issuecomment-394765054 | https://api.github.com/repos/pydata/xarray/issues/2215 | MDEyOklzc3VlQ29tbWVudDM5NDc2NTA1NA== | jjpr-mit 25231875 | 2018-06-05T15:59:57Z | 2018-06-05T15:59:57Z | NONE | For clarity, here are the prints of the arrays before and after alignment: Before alignment: After alignment: |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
align() outer join returns DataArrays that are all NaNs 329438885 | |
394762522 | https://github.com/pydata/xarray/issues/2215#issuecomment-394762522 | https://api.github.com/repos/pydata/xarray/issues/2215 | MDEyOklzc3VlQ29tbWVudDM5NDc2MjUyMg== | jjpr-mit 25231875 | 2018-06-05T15:52:57Z | 2018-06-05T15:52:57Z | NONE | Since the align is an outer join, I would expect all the non-NaN values in the original DataArrays to also appear in the aligned DataArrays. Perhaps I am misinterpreting the behavior of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
align() outer join returns DataArrays that are all NaNs 329438885 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1