issue_comments
3 rows where author_association = "NONE" and issue = 329066551 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- xarray.Dataset.sel(time='2007-04-12') returns unexpected time dimension · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
544864012 | https://github.com/pydata/xarray/issues/2213#issuecomment-544864012 | https://api.github.com/repos/pydata/xarray/issues/2213 | MDEyOklzc3VlQ29tbWVudDU0NDg2NDAxMg== | forman 206773 | 2019-10-22T08:46:46Z | 2019-10-22T12:09:10Z | NONE |
Nope, look at the screenshot again, the dimension is zero. The very similar issue (if not same) remains and should be considered a bug: If I now use However, if I use EDIT It seems that if I create the EDIT 2 Root cause may be related to Pandas indexing using strings that encode different accuracy / resolution: http://pandas-docs.github.io/pandas-docs-travis/user_guide/timeseries.html#slice-vs-exact-match. Very contra-intuitive. Output of
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray.Dataset.sel(time='2007-04-12') returns unexpected time dimension 329066551 | |
394718239 | https://github.com/pydata/xarray/issues/2213#issuecomment-394718239 | https://api.github.com/repos/pydata/xarray/issues/2213 | MDEyOklzc3VlQ29tbWVudDM5NDcxODIzOQ== | hans-permana 7643370 | 2018-06-05T13:55:30Z | 2018-06-05T13:55:30Z | NONE | @shoyer I created a notebook to reproduce this issue with self-contained dummy data and I think I know when this issue occurs. In both cases (my original application and in the notebook example), the time dimension of the DataArray comes with time. When selecting it using .sel, when time is specified with date and time, the returned DataArray is rightly 2D. However, when the time selection includes only the date (when calling xarray.Dataset.sel), the return includes an unexpected time dimension. In the notebook example, the time dimension is 1 because it could find the right date whereas in my application, time dimension is 0 because it could not find the queried date. I am not sure what is the expected behaviour here. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray.Dataset.sel(time='2007-04-12') returns unexpected time dimension 329066551 | |
394371429 | https://github.com/pydata/xarray/issues/2213#issuecomment-394371429 | https://api.github.com/repos/pydata/xarray/issues/2213 | MDEyOklzc3VlQ29tbWVudDM5NDM3MTQyOQ== | hans-permana 7643370 | 2018-06-04T14:19:29Z | 2018-06-04T14:19:29Z | NONE | @jhamman - yes I can reproduce this also in 0.10.6.
INSTALLED VERSIONS
------------------
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 63 Stepping 2, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
xarray: 0.10.6
pandas: 0.19.0
numpy: 1.11.3
scipy: 1.1.0
netCDF4: 1.2.2
h5netcdf: 0.2.2
h5py: 2.6.0
Nio: None
zarr: None
bottleneck: 1.2.1
cyordereddict: 1.0.0
dask: 0.14.1
distributed: 1.21.8
matplotlib: 2.2.2
cartopy: None
seaborn: 0.8.1
setuptools: 27.2.0.post20161106
pip: 9.0.1
conda: None
pytest: 3.6.0
IPython: 6.4.0
sphinx: None
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray.Dataset.sel(time='2007-04-12') returns unexpected time dimension 329066551 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2