issue_comments
7 rows where author_association = "NONE" and issue = 327089588 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Adding resample functionality to CFTimeIndex · 7 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
465294992 | https://github.com/pydata/xarray/issues/2191#issuecomment-465294992 | https://api.github.com/repos/pydata/xarray/issues/2191 | MDEyOklzc3VlQ29tbWVudDQ2NTI5NDk5Mg== | zhonghua-zheng 23510121 | 2019-02-19T20:22:28Z | 2019-02-19T20:22:28Z | NONE | @spencerkclark Very helpful!!! Thanks a million! :) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adding resample functionality to CFTimeIndex 327089588 | |
464953041 | https://github.com/pydata/xarray/issues/2191#issuecomment-464953041 | https://api.github.com/repos/pydata/xarray/issues/2191 | MDEyOklzc3VlQ29tbWVudDQ2NDk1MzA0MQ== | zhonghua-zheng 23510121 | 2019-02-19T02:22:22Z | 2019-02-19T02:22:58Z | NONE | @spencerkclark Thank you very much for your help! I will install the development version on my local machine.
Currently I am using NCAR Cheyenne to manipulate the climate data. What I am doing on Cheyenne as a detour is:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adding resample functionality to CFTimeIndex 327089588 | |
464923777 | https://github.com/pydata/xarray/issues/2191#issuecomment-464923777 | https://api.github.com/repos/pydata/xarray/issues/2191 | MDEyOklzc3VlQ29tbWVudDQ2NDkyMzc3Nw== | zhonghua-zheng 23510121 | 2019-02-18T23:46:46Z | 2019-02-18T23:46:59Z | NONE |
@spencerkclark Thank you very much :) I am new to the Xarray community. I am wondering if there is any instruction regarding installing the latest development version and how to implement the daily resampling function. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adding resample functionality to CFTimeIndex 327089588 | |
464875401 | https://github.com/pydata/xarray/issues/2191#issuecomment-464875401 | https://api.github.com/repos/pydata/xarray/issues/2191 | MDEyOklzc3VlQ29tbWVudDQ2NDg3NTQwMQ== | zhonghua-zheng 23510121 | 2019-02-18T20:56:02Z | 2019-02-18T20:56:02Z | NONE | Hi folks, I have some data like 2000-01-01 00:00:00, 2000-01-01 12:00:00, 2000-01-02 00:00:00, 2000-01-02 12:00:00. The index is cftime And I want to take the average within the same date and save the results. I am wondering if it is possible to resample them at a daily level (e.g., the results will be 2000-01-01 00:00:00 and 2000-01-02 00:00:00)? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adding resample functionality to CFTimeIndex 327089588 | |
395067197 | https://github.com/pydata/xarray/issues/2191#issuecomment-395067197 | https://api.github.com/repos/pydata/xarray/issues/2191 | MDEyOklzc3VlQ29tbWVudDM5NTA2NzE5Nw== | naomi-henderson 31460695 | 2018-06-06T13:25:11Z | 2018-06-06T13:25:11Z | NONE | Yes, when open_mfdataset decides to convert to CFTime this is much faster. When time is in datetime64, I get: ``` AttributeError Traceback (most recent call last) <ipython-input-72-a96fa0263d3e> in <module>() 9 dss = xr.open_mfdataset(files,decode_times=True,autoclose=True) 10 #month_start = [DatetimeNoLeap(date.dt.year, date.dt.month, 1) for date in dss.time] ---> 11 month_start = [DatetimeNoLeap(date.year, date.month, 1) for date in dss.time.values] 12 #month_start = [DatetimeNoLeap(yr, mon, 1) for yr,mon in zip(dss.time.dt.year,dss.time.dt.month)] 13 #break <ipython-input-72-a96fa0263d3e> in <listcomp>(.0) 9 dss = xr.open_mfdataset(files,decode_times=True,autoclose=True) 10 #month_start = [DatetimeNoLeap(date.dt.year, date.dt.month, 1) for date in dss.time] ---> 11 month_start = [DatetimeNoLeap(date.year, date.month, 1) for date in dss.time.values] 12 #month_start = [DatetimeNoLeap(yr, mon, 1) for yr,mon in zip(dss.time.dt.year,dss.time.dt.month)] 13 #break AttributeError: 'numpy.datetime64' object has no attribute 'year' ``` You can see I made a feeble attempt to fix it to work for all the CMIP5 calendars, but is just as slow. Any suggestions? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adding resample functionality to CFTimeIndex 327089588 | |
394890878 | https://github.com/pydata/xarray/issues/2191#issuecomment-394890878 | https://api.github.com/repos/pydata/xarray/issues/2191 | MDEyOklzc3VlQ29tbWVudDM5NDg5MDg3OA== | naomi-henderson 31460695 | 2018-06-05T23:20:00Z | 2018-06-05T23:20:00Z | NONE | @spencerkclark thanks! I hadn't figured out that particular workaround, but it works, albeit quite slow. For now it will get me to the next step, but just changing to first-of-the-month takes longer than regridding all models to a common grid! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adding resample functionality to CFTimeIndex 327089588 | |
394827475 | https://github.com/pydata/xarray/issues/2191#issuecomment-394827475 | https://api.github.com/repos/pydata/xarray/issues/2191 | MDEyOklzc3VlQ29tbWVudDM5NDgyNzQ3NQ== | naomi-henderson 31460695 | 2018-06-05T19:15:09Z | 2018-06-05T19:15:09Z | NONE | I am trying to combine the monthly CMIP5 rcp85 ts datasets (go past 2064AD) with the myriad calendars, so I love the new CFTimeIndex! But I need resample(time='MS') in order to force them all to start on the first of each month thanks! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adding resample functionality to CFTimeIndex 327089588 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2