issue_comments
3 rows where author_association = "NONE", issue = 310547057 and user = 25473287 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- simple command line interface for xarray · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
378107700 | https://github.com/pydata/xarray/issues/2034#issuecomment-378107700 | https://api.github.com/repos/pydata/xarray/issues/2034 | MDEyOklzc3VlQ29tbWVudDM3ODEwNzcwMA== | JiaweiZhuang 25473287 | 2018-04-03T02:26:41Z | 2018-04-03T02:26:41Z | NONE | And this JupyterLab approach will be way better than ncview... Say, you can easily compare multiple NetCDF files by subdividing panels. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
simple command line interface for xarray 310547057 | |
378106951 | https://github.com/pydata/xarray/issues/2034#issuecomment-378106951 | https://api.github.com/repos/pydata/xarray/issues/2034 | MDEyOklzc3VlQ29tbWVudDM3ODEwNjk1MQ== | JiaweiZhuang 25473287 | 2018-04-03T02:21:33Z | 2018-04-03T02:21:33Z | NONE |
Seems like JupyterLab is a perfect fit for this purpose. See this geojson extension for example. Notice that you can view a It should be possible to view a NetCDF file directly in JupyterLab, with an extension built on top of xarray+GeoViews. @philippjfr should have more insights on this... |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
simple command line interface for xarray 310547057 | |
378082894 | https://github.com/pydata/xarray/issues/2034#issuecomment-378082894 | https://api.github.com/repos/pydata/xarray/issues/2034 | MDEyOklzc3VlQ29tbWVudDM3ODA4Mjg5NA== | JiaweiZhuang 25473287 | 2018-04-02T23:45:40Z | 2018-04-03T02:04:52Z | NONE |
GeoViews can make interactive plots of xarray data. There's an example. An even more straightforward and customizable way is matplotlib + Jupyter Interact. It can easily replicate all ncview's functionalities. |
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
simple command line interface for xarray 310547057 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1