issue_comments
3 rows where author_association = "NONE", issue = 286542795 and user = 1872600 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- WIP: Compute==False for to_zarr and to_netcdf · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
382466626 | https://github.com/pydata/xarray/pull/1811#issuecomment-382466626 | https://api.github.com/repos/pydata/xarray/issues/1811 | MDEyOklzc3VlQ29tbWVudDM4MjQ2NjYyNg== | rsignell-usgs 1872600 | 2018-04-18T17:30:25Z | 2018-04-18T17:32:21Z | NONE | @jhamman, I was just using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WIP: Compute==False for to_zarr and to_netcdf 286542795 | |
382421609 | https://github.com/pydata/xarray/pull/1811#issuecomment-382421609 | https://api.github.com/repos/pydata/xarray/issues/1811 | MDEyOklzc3VlQ29tbWVudDM4MjQyMTYwOQ== | rsignell-usgs 1872600 | 2018-04-18T15:11:02Z | 2018-04-18T15:14:12Z | NONE | @jhamman, I tried the same code with a single-threaded scheduler:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WIP: Compute==False for to_zarr and to_netcdf 286542795 | |
381969631 | https://github.com/pydata/xarray/pull/1811#issuecomment-381969631 | https://api.github.com/repos/pydata/xarray/issues/1811 | MDEyOklzc3VlQ29tbWVudDM4MTk2OTYzMQ== | rsignell-usgs 1872600 | 2018-04-17T12:12:15Z | 2018-04-17T12:15:19Z | NONE | @jhamman , I'm trying to test Write National Water Model data to Zarrfrom dask.distributed import Client import pandas as pd import xarray as xr import s3fs import zarr if name == 'main':
root = 'http://tds.renci.org:8080/thredds/dodsC/nwm/forcing_short_range/' # OPenDAP
bucket_endpoint='https://iu.jetstream-cloud.org:8080'
``` and after 20 seconds or so, the process dies with this error: ```python-traceback /home/rsignell/my-conda-envs/zarr/lib/python3.6/site-packages/distributed/worker.py:742: UserWarning: Large object of size 1.23 MB detected in task graph: (<xarray.backends.zarr.ZarrStore object at 0x7f5d8 ... deedecefab224') Consider scattering large objects ahead of time with client.scatter to reduce scheduler burden and keep data on workers
% (format_bytes(len(b)), s)) ``` Do you have suggestions on how to modify my code? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WIP: Compute==False for to_zarr and to_netcdf 286542795 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1