issue_comments
1 row where author_association = "NONE", issue = 264747372 and user = 4992424 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- html repr of xarray object (for the notebook) · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 336001921 | https://github.com/pydata/xarray/issues/1627#issuecomment-336001921 | https://api.github.com/repos/pydata/xarray/issues/1627 | MDEyOklzc3VlQ29tbWVudDMzNjAwMTkyMQ== | darothen 4992424 | 2017-10-12T02:26:05Z | 2017-10-12T02:26:05Z | NONE | Wow, great job @benbovy! With the upcoming move towards Jupyter Lab and a better infrastructure for custom plugins, could this serve as the basis for a "NetCDF Extension" for Jupyter Lab? It would be great if double clicking on a NetCDF file in the JLab file explorer could open up this sort of information, or even a quick and dirty ncview-like plotter. |
{
"total_count": 3,
"+1": 3,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
html repr of xarray object (for the notebook) 264747372 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1