issue_comments
4 rows where author_association = "NONE" and issue = 218459353 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- bottleneck : Wrong mean for float32 array · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
464002579 | https://github.com/pydata/xarray/issues/1346#issuecomment-464002579 | https://api.github.com/repos/pydata/xarray/issues/1346 | MDEyOklzc3VlQ29tbWVudDQ2NDAwMjU3OQ== | aquasync 5469 | 2019-02-15T11:06:06Z | 2019-02-15T11:06:06Z | NONE | Ah ok, I suppose bottleneck is indeed now avoided for float32 xarray. Yeah that issue is for a different function, but the source of the problem and proposed solution in the thread is the same - use higher precision intermediates for float32 (double arithmetic); a small speed vs accuracy/precision trade off. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bottleneck : Wrong mean for float32 array 218459353 | |
458427512 | https://github.com/pydata/xarray/issues/1346#issuecomment-458427512 | https://api.github.com/repos/pydata/xarray/issues/1346 | MDEyOklzc3VlQ29tbWVudDQ1ODQyNzUxMg== | aquasync 5469 | 2019-01-29T06:52:01Z | 2019-01-29T06:52:01Z | NONE | Is it worth changing bottleneck to use double for single precision reductions? AFAICT this is a matter of changing |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bottleneck : Wrong mean for float32 array 218459353 | |
290822179 | https://github.com/pydata/xarray/issues/1346#issuecomment-290822179 | https://api.github.com/repos/pydata/xarray/issues/1346 | MDEyOklzc3VlQ29tbWVudDI5MDgyMjE3OQ== | matteodefelice 6360066 | 2017-03-31T20:31:56Z | 2017-03-31T20:31:56Z | NONE | Thanks all guys for the replies.
@Aegaeon I get the same your results with bottleneck...
@shoyer The point is that I haven't decided the use of float32 and — yes — using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bottleneck : Wrong mean for float32 array 218459353 | |
290692479 | https://github.com/pydata/xarray/issues/1346#issuecomment-290692479 | https://api.github.com/repos/pydata/xarray/issues/1346 | MDEyOklzc3VlQ29tbWVudDI5MDY5MjQ3OQ== | matteodefelice 6360066 | 2017-03-31T11:53:12Z | 2017-03-31T11:53:12Z | NONE | Ok, I am on MacOS: - Python 2.7.13 from Macports - Dask 0.14.1 from Macports - xarray from GitHub |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bottleneck : Wrong mean for float32 array 218459353 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2