home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where author_association = "NONE", issue = 207283854 and user = 10928117 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • RafalSkolasinski · 2 ✖

issue 1

  • variable length of a dimension in DataArray · 2 ✖

author_association 1

  • NONE · 2 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
280422799 https://github.com/pydata/xarray/issues/1265#issuecomment-280422799 https://api.github.com/repos/pydata/xarray/issues/1265 MDEyOklzc3VlQ29tbWVudDI4MDQyMjc5OQ== RafalSkolasinski 10928117 2017-02-16T18:51:30Z 2017-02-16T18:51:30Z NONE

Hi, I tried to came with a bit more interesting but still simple example

```python from itertools import product import numpy as np import pandas as pd

import holoviews as hv hv.notebook_extension()

def energies(L, a): k = np.pi * np.arange(1, L//a) / L return {'exact': k2, 'approx': 2*(1 - np.cos(k * a)) / a2}

L = np.arange(10, 21, 2) a = np.array([1, .5, .25])

data = [] for Li, ai in product(L, a): output = dict(L=Li, a=ai) output.update(**energies(Li, ai)) data.append(output)

df = pd.DataFrame(data)

hmap_data = {} for n, row in df.iterrows(): key = row.L, row.a val = (hv.Points((np.arange(len(row.exact)), row.exact), kdims=['n', 'E']) * hv.Points((np.arange(len(row.approx)), row.approx), kdims=['n', 'E'])) hmap_data[key] = val

hv.HoloMap(hmap_data, kdims=['L', 'a']).select(n=(0, 20), E=(0, 20)) ```

example is simple and don't include any serious simulation. I compare here energies of particle in 1D box vs what would came out from tight-binding simulation. Example is very simple but it captures situation that happens often when calculating spectrum of a finite system: for different system size we get different amount of energy levels.

That simple example is manageable without any pandas or xarray machinery but imagine real simulation made with kwant for series of different input parameters (system dimensions, gate voltages, chemical potentials, etc...)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  variable length of a dimension in DataArray 207283854
279514589 https://github.com/pydata/xarray/issues/1265#issuecomment-279514589 https://api.github.com/repos/pydata/xarray/issues/1265 MDEyOklzc3VlQ29tbWVudDI3OTUxNDU4OQ== RafalSkolasinski 10928117 2017-02-13T20:37:48Z 2017-02-13T20:37:48Z NONE

I believe that this is a common problem in simulation of quantum mechanical problems. I will try to come with a bit more realistic / practical example that I hope will help with choosing the best solution.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  variable length of a dimension in DataArray 207283854

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 15.479ms · About: xarray-datasette