issue_comments
1 row where author_association = "NONE", issue = 187608079 and user = 4992424 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Is there a more efficient way to convert a subset of variables to a dataframe? · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 661953980 | https://github.com/pydata/xarray/issues/1086#issuecomment-661953980 | https://api.github.com/repos/pydata/xarray/issues/1086 | MDEyOklzc3VlQ29tbWVudDY2MTk1Mzk4MA== | darothen 4992424 | 2020-07-21T16:09:25Z | 2020-07-21T16:09:52Z | NONE | Hi @andreall, I'll leave @dcherian or another maintainer to comment on internals of  ``` python import xarray as xr from pathlib import Path from joblib import delayed, Parallel dir_input = Path('.') fns = list(sorted(dir_input.glob('*/' + 'WW3_EUR-11_CCCma-CanESM2_r1i1p1_CLMcom-CCLM4-8-17_v1_6hr_.nc'))) Helper function to convert NetCDF to CSV with our processingdef _nc_to_csv(fn): data_ww3 = xr.open_dataset(fn) data_ww3 = data_ww3.isel(latitude=74, longitude=18) df_ww3 = data_ww3[['hs', 't02', 't0m1', 't01', 'fp', 'dir', 'spr', 'dp']].to_dataframe() Using joblib.Parallel to distribute my work across whatever resources i haveout_fns = Parallel( n_jobs=-1, # Use all cores available here delayed(_nc_to_csv)(fn) for fn in fns ) Read the CSV files and merge themdfs = [ pd.read_csv(fn) for fn in out_fns ] df_ww3_all = pd.concat(dfs, ignore_index=True) ``` YMMV but this pattern often works for many types of processing applications. | {
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
} | Is there a more efficient way to convert a subset of variables to a dataframe? 187608079 | 
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
user 1