issue_comments
1 row where author_association = "NONE", issue = 162726984 and user = 17951292 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- BUG: Test for dask version erroneously fails when calling xr.mfdataset() · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 229762102 | https://github.com/pydata/xarray/issues/891#issuecomment-229762102 | https://api.github.com/repos/pydata/xarray/issues/891 | MDEyOklzc3VlQ29tbWVudDIyOTc2MjEwMg== | dgoldwx2112 17951292 | 2016-06-30T19:22:43Z | 2016-06-30T19:22:43Z | NONE | Thanks, Stephan! Enjoy your vacation! For now I am processing multiple files over an opendap connection using netCDF4.MFDataset and then building a DataArray or Dataset from the variables stored within the resulting MFDataset object. This appears much faster than the process recommend here when a lot of big files are involved: http://xarray.pydata.org/en/stable/io.html (i.e., using read_netcdfs). Once a bug fix is implemented, I'll try using the dask-optimized open_mfdataset(). |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
BUG: Test for dask version erroneously fails when calling xr.mfdataset() 162726984 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1