issue_comments
2 rows where author_association = "NONE" and issue = 1510151748 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Allow passing figure handle to FacetGrid · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1364707378 | https://github.com/pydata/xarray/issues/7401#issuecomment-1364707378 | https://api.github.com/repos/pydata/xarray/issues/7401 | IC_kwDOAMm_X85RV8gy | daliagachc 15239248 | 2022-12-25T16:38:03Z | 2022-12-25T16:38:03Z | NONE | I have actually manage to make it work with minimal modification of the source xarray code: ```python import xarray as xr import matplotlib.pyplot as plt import matplotlib as mpl def _pass(_,*__): pass mpl.figure.SubFigure.tight_layout = _pass da = xr.tutorial.open_dataset("air_temperature")['air'] fig:plt.Figure = plt.figure( constrained_layout=True, figsize = (24,22) ) (fig_top,fig_bot) = fig.subfigures(2,1) ( da.groupby(da['time'].dt.season) .mean() .plot(col='season',fig=fig_top) ) (
da.groupby(da['time'].dt.hour)
.mean()
.plot(col='hour', fig=fig_bot)
)
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow passing figure handle to FacetGrid 1510151748 | |
1364696481 | https://github.com/pydata/xarray/issues/7401#issuecomment-1364696481 | https://api.github.com/repos/pydata/xarray/issues/7401 | IC_kwDOAMm_X85RV52h | daliagachc 15239248 | 2022-12-25T15:12:15Z | 2022-12-25T15:12:15Z | NONE | thanks for the reply. Somehow i don't find an elegant way that does not involve many loops and hoops. Lets consider the following short example:
I want to produce a figure that takes the xr.tutorial.open_dataset("air_temperature") and produces a mean grouped by season and hour in the same figure:
da = xr.tutorial.open_dataset("air_temperature")['air'] ( da.groupby(da['time'].dt.season) .mean() .plot(col='season') ) (
da.groupby(da['time'].dt.hour)
.mean()
.plot(col='hour')
)
```
but combining both seems quite complicated to me. I wish I could pass a subfigure to the plot function in the following way ```python fig:plt.Figure = plt.figure() (fig_top,fig_bot) = fig.subfigures(2,1) ( da.groupby(da['time'].dt.season) .mean() .plot(col='season',fig=fig_top) ) (
da.groupby(da['time'].dt.hour)
.mean()
.plot(col='hour', fig=fig_bot)
)
```
maybe I am missing a smart way of doing this? cheers |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow passing figure handle to FacetGrid 1510151748 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1