home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where author_association = "NONE" and issue = 1510151748 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • daliagachc 2

issue 1

  • Allow passing figure handle to FacetGrid · 2 ✖

author_association 1

  • NONE · 2 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1364707378 https://github.com/pydata/xarray/issues/7401#issuecomment-1364707378 https://api.github.com/repos/pydata/xarray/issues/7401 IC_kwDOAMm_X85RV8gy daliagachc 15239248 2022-12-25T16:38:03Z 2022-12-25T16:38:03Z NONE

I have actually manage to make it work with minimal modification of the source xarray code: ```python import xarray as xr import matplotlib.pyplot as plt import matplotlib as mpl

def _pass(_,*__): pass

mpl.figure.SubFigure.tight_layout = _pass

da = xr.tutorial.open_dataset("air_temperature")['air'] fig:plt.Figure = plt.figure( constrained_layout=True, figsize = (24,22) )

(fig_top,fig_bot) = fig.subfigures(2,1)

( da.groupby(da['time'].dt.season) .mean() .plot(col='season',fig=fig_top) )

( da.groupby(da['time'].dt.hour) .mean() .plot(col='hour', fig=fig_bot) ) ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Allow passing figure handle to FacetGrid 1510151748
1364696481 https://github.com/pydata/xarray/issues/7401#issuecomment-1364696481 https://api.github.com/repos/pydata/xarray/issues/7401 IC_kwDOAMm_X85RV52h daliagachc 15239248 2022-12-25T15:12:15Z 2022-12-25T15:12:15Z NONE

thanks for the reply. Somehow i don't find an elegant way that does not involve many loops and hoops. Lets consider the following short example: I want to produce a figure that takes the xr.tutorial.open_dataset("air_temperature") and produces a mean grouped by season and hour in the same figure: Creating the top and bottom rows independently is super efficient with xarray: ```python import xarray as xr import matplotlib.pyplot as plt

da = xr.tutorial.open_dataset("air_temperature")['air']

( da.groupby(da['time'].dt.season) .mean() .plot(col='season') )

( da.groupby(da['time'].dt.hour) .mean() .plot(col='hour') ) ```

but combining both seems quite complicated to me. I wish I could pass a subfigure to the plot function in the following way ```python fig:plt.Figure = plt.figure() (fig_top,fig_bot) = fig.subfigures(2,1)

( da.groupby(da['time'].dt.season) .mean() .plot(col='season',fig=fig_top) )

( da.groupby(da['time'].dt.hour) .mean() .plot(col='hour', fig=fig_bot) ) ```

maybe I am missing a smart way of doing this? cheers

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Allow passing figure handle to FacetGrid 1510151748

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 2321.548ms · About: xarray-datasette