issue_comments
1 row where author_association = "NONE", issue = 1379372915 and user = 1250693 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- pandas.errors.InvalidIndexError raised when running computation in parallel using dask · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1267516307 | https://github.com/pydata/xarray/issues/7059#issuecomment-1267516307 | https://api.github.com/repos/pydata/xarray/issues/7059 | IC_kwDOAMm_X85LjMOT | jessjaco 1250693 | 2022-10-04T20:03:37Z | 2022-10-04T20:03:37Z | NONE | I've had the same issues under the exact same conditions. However, it happens whether I use dask or not. This solution fixes it, but I agree at least a doc update would be helpful! |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
pandas.errors.InvalidIndexError raised when running computation in parallel using dask 1379372915 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1