issue_comments
1 row where author_association = "NONE" and issue = 1336946890 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Loading icon-d2 · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1212987160 | https://github.com/pydata/xarray/issues/6909#issuecomment-1212987160 | https://api.github.com/repos/pydata/xarray/issues/6909 | IC_kwDOAMm_X85ITLcY | RafaelAbel 21034385 | 2022-08-12T10:58:15Z | 2022-08-12T16:07:36Z | NONE | Thanks for your help, Kai. I have a follow-up question: What about when I have multiple timesteps... ``` import xarray as xr import glob file_list = glob.glob(target_dir + '*.grib2') ds = xr.open_mfdataset(file_list, engine='cfgrib', combine="nested", concat_dim="generalVerticalLayer") ``` It does load the data, but it does not get the dimensions right. Note that I attached a new dataset, which in the end should have the dimensions lon, lat, vertical and time. Thanks for your help! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Loading icon-d2 1336946890 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1