issue_comments
1 row where author_association = "NONE", issue = 1329754426 and user = 12760310 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- `Dataset.where()` incorrectly applies mask and creates new dimensions · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1206361835 | https://github.com/pydata/xarray/issues/6879#issuecomment-1206361835 | https://api.github.com/repos/pydata/xarray/issues/6879 | IC_kwDOAMm_X85H557r | guidocioni 12760310 | 2022-08-05T11:53:15Z | 2022-08-05T11:53:30Z | NONE |
Hey, thanks for the workaround.
However, I'm still not convinced that this is the "correct" behaviour.
If What is the use case in enlarging the 1-D array to a 3-D array with coordinates that it didn't have before? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
`Dataset.where()` incorrectly applies mask and creates new dimensions 1329754426 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1