issue_comments
1 row where author_association = "NONE" and issue = 1307112340 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- `interp` performance with chunked dimensions · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1317352980 | https://github.com/pydata/xarray/issues/6799#issuecomment-1317352980 | https://api.github.com/repos/pydata/xarray/issues/6799 | IC_kwDOAMm_X85OhTYU | gjoseph92 3309802 | 2022-11-16T17:00:04Z | 2022-11-16T17:00:04Z | NONE |
Don't really know what I'm talking about here, but it looks to me like the current dask-interpolation routine uses I would have expected interpolation to use FYI, fixing this would probably be a big deal to geospatial people—then you could do array reprojection without GDAL! Unfortunately not something I have time to work on right now, but perhaps someone else would be interested? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`interp` performance with chunked dimensions 1307112340 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1