issue_comments
3 rows where author_association = "NONE" and issue = 128687346 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Implement tensordot for xarray with dask support · 3 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 175378477 | https://github.com/pydata/xarray/issues/723#issuecomment-175378477 | https://api.github.com/repos/pydata/xarray/issues/723 | MDEyOklzc3VlQ29tbWVudDE3NTM3ODQ3Nw== | deanpospisil 15167171 | 2016-01-27T03:59:46Z | 2016-01-27T04:00:24Z | NONE | Also that einsum does seem pretty ideal. I'll see if I can get it running in dask, so we can port it over here. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement tensordot for xarray with dask support 128687346 | |
| 175378292 | https://github.com/pydata/xarray/issues/723#issuecomment-175378292 | https://api.github.com/repos/pydata/xarray/issues/723 | MDEyOklzc3VlQ29tbWVudDE3NTM3ODI5Mg== | deanpospisil 15167171 | 2016-01-27T03:58:31Z | 2016-01-27T03:58:31Z | NONE | I wasn't sure where the best place to put the def would be. Currently I have been running it from the xarray class:
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement tensordot for xarray with dask support 128687346 | |
| 175175494 | https://github.com/pydata/xarray/issues/723#issuecomment-175175494 | https://api.github.com/repos/pydata/xarray/issues/723 | MDEyOklzc3VlQ29tbWVudDE3NTE3NTQ5NA== | deanpospisil 15167171 | 2016-01-26T18:53:02Z | 2016-01-26T18:53:02Z | NONE | Looks like it can perform tensor dot for dask and straight xarrays! But apparently dask has not implemented tensordot with multiple axes arguments, and it also does not work performing a tensor dot between a dask xarray and an xarray. Neither of these cases worries me too much, hopefully they don't worry you. ``` python from xarray import align, DataArray note: using private imports (e.g., from xarray.core) is definitely discouraged!this is not guaranteed to work in future versions of xarrayfrom xarray.core.ops import _dask_or_eager_func def tensordot(a, b, dims): if not (isinstance(a, DataArray) and isinstance(b, DataArray)): raise ValueError
import xarray as xr import numpy as np x_trans = np.linspace(-3,3,6) y_trans = np.linspace(-3,3,5) imgID = range(4) da = xr.DataArray( np.ones((6,5,4)), coords = [ x_trans, y_trans, imgID ], dims = ['x_trans', 'y_trans', 'imgID'] ) models = range(20) dm = xr.DataArray( np.ones(( 20 , 5, 4 )), coords = [ models, y_trans, imgID], dims = [ 'models', 'y_trans', 'imgID' ] ) xarray tensordotproj_a = tensordot(da, dm, 'imgID') dask xarray tensor dotda = da.chunk() dm = dm.chunk() proj_b = tensordot(da, dm, 'imgID') errorsmultiple dimsproj_c = tensordot(da, dm, ['imgID', 'y_trans']) mixed typesda = da.chunk() dm = dm.load() proj_d = tensordot(da, dm, 'imgID') ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement tensordot for xarray with dask support 128687346 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1