issue_comments
1 row where author_association = "NONE", issue = 1268821199 and user = 90059220 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Rolling.argmin() and Rolling.argmax() over multiple dimensions does not work · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1158434252 | https://github.com/pydata/xarray/issues/6691#issuecomment-1158434252 | https://api.github.com/repos/pydata/xarray/issues/6691 | IC_kwDOAMm_X85FDE3M | AlxLhrNc 90059220 | 2022-06-17T02:54:27Z | 2022-06-17T02:54:27Z | NONE | Thank you for upgrading this question. Using keewis suggestion:
I had a look into arr = xr.DataArray(np.ones((5,6,7))) arr[1,3,2], arr[3,1,4] = 0, 2 print('Values:',arr.min(), arr.max()) min_pos = np.concatenate(np.where(arr == arr.min())) max_pos = np.concatenate(np.where(arr == arr.max())) print('Indexes on nD:', min_pos, max_pos) ``` It is not perfect I suppose but it is doing the job for now. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Rolling.argmin() and Rolling.argmax() over multiple dimensions does not work 1268821199 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1