issue_comments
where author_association = "MEMBER", issue = 98498103 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
These facets timed out: author_association, issue
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 127815521 | https://github.com/pydata/xarray/pull/507#issuecomment-127815521 | https://api.github.com/repos/pydata/xarray/issues/507 | MDEyOklzc3VlQ29tbWVudDEyNzgxNTUyMQ== | shoyer 1217238 | 2015-08-05T01:44:15Z | 2015-08-05T01:44:15Z | MEMBER | @jhamman any other comments? If not, I'll merge this shortly. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Add sel_points for point-wise indexing by label 98498103 | |
| 126972030 | https://github.com/pydata/xarray/pull/507#issuecomment-126972030 | https://api.github.com/repos/pydata/xarray/issues/507 | MDEyOklzc3VlQ29tbWVudDEyNjk3MjAzMA== | shoyer 1217238 | 2015-08-02T01:32:15Z | 2015-08-02T01:32:15Z | MEMBER |
This has been my strategy. Pandas has lots of tests for the exact behavior of |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Add sel_points for point-wise indexing by label 98498103 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1