issue_comments
2 rows where author_association = "MEMBER", issue = 98498103 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Add sel_points for point-wise indexing by label · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
127815521 | https://github.com/pydata/xarray/pull/507#issuecomment-127815521 | https://api.github.com/repos/pydata/xarray/issues/507 | MDEyOklzc3VlQ29tbWVudDEyNzgxNTUyMQ== | shoyer 1217238 | 2015-08-05T01:44:15Z | 2015-08-05T01:44:15Z | MEMBER | @jhamman any other comments? If not, I'll merge this shortly. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add sel_points for point-wise indexing by label 98498103 | |
126972030 | https://github.com/pydata/xarray/pull/507#issuecomment-126972030 | https://api.github.com/repos/pydata/xarray/issues/507 | MDEyOklzc3VlQ29tbWVudDEyNjk3MjAzMA== | shoyer 1217238 | 2015-08-02T01:32:15Z | 2015-08-02T01:32:15Z | MEMBER |
This has been my strategy. Pandas has lots of tests for the exact behavior of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add sel_points for point-wise indexing by label 98498103 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1