issue_comments
1 row where author_association = "MEMBER", issue = 882876804 and user = 2448579 sorted by updated_at descending
This data as json, CSV (advanced)
issue 1
- Dask-friendly nan check in xr.corr() and xr.cov() · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 837097308 | https://github.com/pydata/xarray/pull/5284#issuecomment-837097308 | https://api.github.com/repos/pydata/xarray/issues/5284 | MDEyOklzc3VlQ29tbWVudDgzNzA5NzMwOA== | dcherian 2448579 | 2021-05-10T18:25:29Z | 2021-05-10T18:25:29Z | MEMBER | Well that was confusing! I discovered this with Define function to use in map_blocksdef _get_valid_values(da, other): da1, da2 = xr.align(da, other, join="inner", copy=False)
da_a.map_blocks(_get_valid_values, args=[da_b]).compute(scheduler="sync") ``` For better performance, we should try a |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Dask-friendly nan check in xr.corr() and xr.cov() 882876804 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1