home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where author_association = "MEMBER", issue = 866826033 and user = 2448579 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • dcherian · 1 ✖

issue 1

  • Add an Cumulative aggregation, similar to Rolling · 1 ✖

author_association 1

  • MEMBER · 1 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
826364666 https://github.com/pydata/xarray/issues/5215#issuecomment-826364666 https://api.github.com/repos/pydata/xarray/issues/5215 MDEyOklzc3VlQ29tbWVudDgyNjM2NDY2Ng== dcherian 2448579 2021-04-25T18:05:55Z 2021-04-25T18:05:55Z MEMBER

IIUC da.expanding(dim=dim).sum() is da.cumsum(dim) with support for min_periods and center like rolling.

I guess all expanding reductions are basically numpy.ufunc.accumulate(...). The dask versions will be "interesting" to write. https://github.com/dask/dask/blob/f1f37cae96d5e98f8043ea430539a4fffbe62661/dask/array/reductions.py#L1389-L1413

Like @mathause I find "expanding" confusing. .accumulate().sum() or .cumulative().sum() sounds much better to me.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add an Cumulative aggregation, similar to Rolling 866826033

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 404.166ms · About: xarray-datasette