issue_comments
1 row where author_association = "MEMBER", issue = 775502974 and user = 1312546 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- ENH: Compute hash of xarray objects · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
752156934 | https://github.com/pydata/xarray/issues/4738#issuecomment-752156934 | https://api.github.com/repos/pydata/xarray/issues/4738 | MDEyOklzc3VlQ29tbWVudDc1MjE1NjkzNA== | TomAugspurger 1312546 | 2020-12-29T16:53:16Z | 2020-12-29T16:53:16Z | MEMBER | IIUC, something like https://github.com/dask/dask/blob/4a7a2438219c4ee493434042e50f4cdb67b6ec9f/dask/base.py#L778 is what you're looking for. Further down we register tokenizers for various types like pandas' DataFrames and ndarrays. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: Compute hash of xarray objects 775502974 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1