home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where author_association = "MEMBER" and issue = 683649612 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 3

  • shoyer 1
  • mathause 1
  • keewis 1

issue 1

  • Surprising deepcopy semantics with dtype='object' · 3 ✖

author_association 1

  • MEMBER · 3 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
679869467 https://github.com/pydata/xarray/issues/4362#issuecomment-679869467 https://api.github.com/repos/pydata/xarray/issues/4362 MDEyOklzc3VlQ29tbWVudDY3OTg2OTQ2Nw== mathause 10194086 2020-08-25T08:00:21Z 2020-08-25T08:00:21Z MEMBER

@darikg are you interested to send in a PR?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Surprising deepcopy semantics with dtype='object' 683649612
678811192 https://github.com/pydata/xarray/issues/4362#issuecomment-678811192 https://api.github.com/repos/pydata/xarray/issues/4362 MDEyOklzc3VlQ29tbWVudDY3ODgxMTE5Mg== shoyer 1217238 2020-08-23T18:58:13Z 2020-08-23T18:58:13Z MEMBER

I agree, marking this as a bug. We should use deepcopy() recursively on NumPy arrays.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Surprising deepcopy semantics with dtype='object' 683649612
678369025 https://github.com/pydata/xarray/issues/4362#issuecomment-678369025 https://api.github.com/repos/pydata/xarray/issues/4362 MDEyOklzc3VlQ29tbWVudDY3ODM2OTAyNQ== keewis 14808389 2020-08-21T16:05:46Z 2020-08-21T16:05:46Z MEMBER

the issue is that we use numpy.ndarray.copy to copy the data: https://github.com/pydata/xarray/blob/43a2a4bdf3a492d89aae9f2c5b0867932ff51cef/xarray/core/variable.py#L939 (numpy.ndarray defines __array_function__).

You can reproduce the issue using just numpy: python In [14]: a0.copy()[0] is a0[0] Out[14]: True

We might want to use deepcopy instead because duck arrays are not required to implement .copy.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Surprising deepcopy semantics with dtype='object' 683649612

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 318.18ms · About: xarray-datasette