home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where author_association = "MEMBER", issue = 595813283 and user = 35968931 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • TomNicholas · 3 ✖

issue 1

  • removing uneccessary dimension · 3 ✖

author_association 1

  • MEMBER · 3 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
610522710 https://github.com/pydata/xarray/issues/3946#issuecomment-610522710 https://api.github.com/repos/pydata/xarray/issues/3946 MDEyOklzc3VlQ29tbWVudDYxMDUyMjcxMA== TomNicholas 35968931 2020-04-07T17:35:12Z 2020-04-07T17:35:12Z MEMBER

If people think this would be useful addition to the API then we could add it - or it could just be a cookbook recipe.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  removing uneccessary dimension 595813283
610519628 https://github.com/pydata/xarray/issues/3946#issuecomment-610519628 https://api.github.com/repos/pydata/xarray/issues/3946 MDEyOklzc3VlQ29tbWVudDYxMDUxOTYyOA== TomNicholas 35968931 2020-04-07T17:29:10Z 2020-04-07T17:32:59Z MEMBER

Hi @lanougue , thanks for the suggestion!

If I understand correctly, you want to check that all elements are close along one dimension, and if so, then select only one index from that dimension? That seems to me to be two consecutive operations, the first of which is a reduction, and the second is just .isel: ```python da = xr.DataArray([[1.,2.],[1.,2.]], dims=('x','y'))

def reduce_if_constant_along_dim(da, dim): first = da.isel(**{dim: 0}) constant_along_dim = (da == first).all(dim)

true = xr.full_like(da, fill_value=True).isel(**{dim: 0}, drop=True)
if constant_along_dim.equals(true):
    return da.isel(**{dim: 0}, drop=True)
else:
    return da

print(reduce_if_constant_along_dim(da, dim='x')) bash <xarray.DataArray (y: 2)> array([1., 2.]) ```

or are you imagining something that applies the above function to every dim, more like: ```python def drop_constant_dims(da): for dim in da.dims: da = reduce_if_constant_along_dim(da, dim) return da

print(drop_constant_dims(da)) bash <xarray.DataArray (y: 2)> array([1., 2.]) `` There might be a slightly neater way usingreduce` somehow though.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  removing uneccessary dimension 595813283
610520813 https://github.com/pydata/xarray/issues/3946#issuecomment-610520813 https://api.github.com/repos/pydata/xarray/issues/3946 MDEyOklzc3VlQ29tbWVudDYxMDUyMDgxMw== TomNicholas 35968931 2020-04-07T17:31:28Z 2020-04-07T17:31:28Z MEMBER

@jthielen you should be able to adapt my example to check for being within a tolerance rather than strict equality.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  removing uneccessary dimension 595813283

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 2317.046ms · About: xarray-datasette