issue_comments
6 rows where author_association = "MEMBER", issue = 591101988 and user = 14808389 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- FIX: correct dask array handling in _calc_idxminmax · 6 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
608440269 | https://github.com/pydata/xarray/pull/3922#issuecomment-608440269 | https://api.github.com/repos/pydata/xarray/issues/3922 | MDEyOklzc3VlQ29tbWVudDYwODQ0MDI2OQ== | keewis 14808389 | 2020-04-03T13:41:50Z | 2020-04-03T13:41:50Z | MEMBER | I'd say add a new entry. Also, I think we're all just reviewers so adding just your name should be fine. |
{ "total_count": 2, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
FIX: correct dask array handling in _calc_idxminmax 591101988 | |
608406175 | https://github.com/pydata/xarray/pull/3922#issuecomment-608406175 | https://api.github.com/repos/pydata/xarray/issues/3922 | MDEyOklzc3VlQ29tbWVudDYwODQwNjE3NQ== | keewis 14808389 | 2020-04-03T12:28:51Z | 2020-04-03T12:28:51Z | MEMBER | I think so? For now, xfail if |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
FIX: correct dask array handling in _calc_idxminmax 591101988 | |
608391739 | https://github.com/pydata/xarray/pull/3922#issuecomment-608391739 | https://api.github.com/repos/pydata/xarray/issues/3922 | MDEyOklzc3VlQ29tbWVudDYwODM5MTczOQ== | keewis 14808389 | 2020-04-03T11:53:22Z | 2020-04-03T12:02:30Z | MEMBER | it seems you can't use In [25]: array.compute().argmin(dim="x") In [26]: array.argmin(dim="x")UFuncTypeError Traceback (most recent call last) <ipython-input-26-e665d5b1b9b4> in <module> ----> 1 array.argmin(dim="x") .../xarray/core/common.py in wrapped_func(self, dim, axis, skipna, kwargs) 44 45 def wrapped_func(self, dim=None, axis=None, skipna=None, kwargs): ---> 46 return self.reduce(func, dim, axis, skipna=skipna, **kwargs) 47 48 else: .../xarray/core/dataarray.py in reduce(self, func, dim, axis, keep_attrs, keepdims, kwargs) 2260 """ 2261 -> 2262 var = self.variable.reduce(func, dim, axis, keep_attrs, keepdims, kwargs) 2263 return self._replace_maybe_drop_dims(var) 2264 .../xarray/core/variable.py in reduce(self, func, dim, axis, keep_attrs, keepdims, allow_lazy, kwargs) 1573 1574 if axis is not None: -> 1575 data = func(input_data, axis=axis, kwargs) 1576 else: 1577 data = func(input_data, **kwargs) .../xarray/core/duck_array_ops.py in f(values, axis, skipna, kwargs) 302 303 try: --> 304 return func(values, axis=axis, kwargs) 305 except AttributeError: 306 if not isinstance(values, dask_array_type): .../xarray/core/duck_array_ops.py in f(args, kwargs) 45 else: 46 wrapped = getattr(eager_module, name) ---> 47 return wrapped(args, **kwargs) 48 49 else: ~/.conda/envs/xarray/lib/python3.8/site-packages/dask/array/reductions.py in wrapped(x, axis, split_every, out) 1002 1003 def wrapped(x, axis=None, split_every=None, out=None): -> 1004 return arg_reduction( 1005 x, chunk, combine, agg, axis, split_every=split_every, out=out 1006 ) ~/.conda/envs/xarray/lib/python3.8/site-packages/dask/array/reductions.py in arg_reduction(x, chunk, combine, agg, axis, split_every, out) 980 tmp = Array(graph, name, chunks, dtype=x.dtype) 981 dtype = np.argmin([1]).dtype --> 982 result = _tree_reduce(tmp, agg, axis, False, dtype, split_every, combine) 983 return handle_out(out, result) 984 ~/.conda/envs/xarray/lib/python3.8/site-packages/dask/array/reductions.py in _tree_reduce(x, aggregate, axis, keepdims, dtype, split_every, combine, name, concatenate, reduced_meta) 243 if concatenate: 244 func = compose(func, partial(_concatenate2, axes=axis)) --> 245 return partial_reduce( 246 func, 247 x, ~/.conda/envs/xarray/lib/python3.8/site-packages/dask/array/reductions.py in partial_reduce(func, x, split_every, keepdims, dtype, name, reduced_meta) 314 if is_arraylike(meta) and meta.ndim != len(out_chunks): 315 if len(out_chunks) == 0: --> 316 meta = meta.sum() 317 else: 318 meta = meta.reshape((0,) * len(out_chunks)) ~/.conda/envs/xarray/lib/python3.8/site-packages/numpy/core/_methods.py in _sum(a, axis, dtype, out, keepdims, initial, where) 36 def _sum(a, axis=None, dtype=None, out=None, keepdims=False, 37 initial=_NoValue, where=True): ---> 38 return umr_sum(a, axis, dtype, out, keepdims, initial, where) 39 40 def _prod(a, axis=None, dtype=None, out=None, keepdims=False, UFuncTypeError: ufunc 'add' cannot use operands with types dtype('<M8[ns]') and dtype('<M8[ns]')
Edit: you can reproduce it without MWE with only <tt>numpy</tt> / <tt>dask.array</tt>```python In [32]: time = np.asarray(pd.date_range("2019-07-17", periods=10)) ...: np.argmin(da.from_array(time)) --------------------------------------------------------------------------- UFuncTypeError Traceback (most recent call last) <ipython-input-32-190cb901ff65> in <module> 1 time = np.asarray(pd.date_range("2019-07-17", periods=10)) ----> 2 np.argmin(da.from_array(time)) <__array_function__ internals> in argmin(*args, **kwargs) ~/.conda/envs/xarray/lib/python3.8/site-packages/dask/array/core.py in __array_function__(self, func, types, args, kwargs) 1348 if da_func is func: 1349 return handle_nonmatching_names(func, args, kwargs) -> 1350 return da_func(*args, **kwargs) 1351 1352 @property ~/.conda/envs/xarray/lib/python3.8/site-packages/dask/array/reductions.py in wrapped(x, axis, split_every, out) 1002 1003 def wrapped(x, axis=None, split_every=None, out=None): -> 1004 return arg_reduction( 1005 x, chunk, combine, agg, axis, split_every=split_every, out=out 1006 ) ~/.conda/envs/xarray/lib/python3.8/site-packages/dask/array/reductions.py in arg_reduction(x, chunk, combine, agg, axis, split_every, out) 980 tmp = Array(graph, name, chunks, dtype=x.dtype) 981 dtype = np.argmin([1]).dtype --> 982 result = _tree_reduce(tmp, agg, axis, False, dtype, split_every, combine) 983 return handle_out(out, result) 984 ~/.conda/envs/xarray/lib/python3.8/site-packages/dask/array/reductions.py in _tree_reduce(x, aggregate, axis, keepdims, dtype, split_every, combine, name, concatenate, reduced_meta) 243 if concatenate: 244 func = compose(func, partial(_concatenate2, axes=axis)) --> 245 return partial_reduce( 246 func, 247 x, ~/.conda/envs/xarray/lib/python3.8/site-packages/dask/array/reductions.py in partial_reduce(func, x, split_every, keepdims, dtype, name, reduced_meta) 314 if is_arraylike(meta) and meta.ndim != len(out_chunks): 315 if len(out_chunks) == 0: --> 316 meta = meta.sum() 317 else: 318 meta = meta.reshape((0,) * len(out_chunks)) ~/.conda/envs/xarray/lib/python3.8/site-packages/numpy/core/_methods.py in _sum(a, axis, dtype, out, keepdims, initial, where) 36 def _sum(a, axis=None, dtype=None, out=None, keepdims=False, 37 initial=_NoValue, where=True): ---> 38 return umr_sum(a, axis, dtype, out, keepdims, initial, where) 39 40 def _prod(a, axis=None, dtype=None, out=None, keepdims=False, UFuncTypeError: ufunc 'add' cannot use operands with types dtype('<M8[ns]') and dtype('<M8[ns]') ``` </details> |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
FIX: correct dask array handling in _calc_idxminmax 591101988 | |
608341636 | https://github.com/pydata/xarray/pull/3922#issuecomment-608341636 | https://api.github.com/repos/pydata/xarray/issues/3922 | MDEyOklzc3VlQ29tbWVudDYwODM0MTYzNg== | keewis 14808389 | 2020-04-03T09:47:14Z | 2020-04-03T09:55:35Z | MEMBER | I'd put the Edit: that's easy for |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
FIX: correct dask array handling in _calc_idxminmax 591101988 | |
608331001 | https://github.com/pydata/xarray/pull/3922#issuecomment-608331001 | https://api.github.com/repos/pydata/xarray/issues/3922 | MDEyOklzc3VlQ29tbWVudDYwODMzMTAwMQ== | keewis 14808389 | 2020-04-03T09:24:39Z | 2020-04-03T09:24:39Z | MEMBER | :+1: |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
FIX: correct dask array handling in _calc_idxminmax 591101988 | |
608322689 | https://github.com/pydata/xarray/pull/3922#issuecomment-608322689 | https://api.github.com/repos/pydata/xarray/issues/3922 | MDEyOklzc3VlQ29tbWVudDYwODMyMjY4OQ== | keewis 14808389 | 2020-04-03T09:06:42Z | 2020-04-03T09:06:42Z | MEMBER | The issue is that To get your 3D example (and potentially every N-D example) to work, simply fall back to the wrapped array's integer indexing (using In [3]: indx = array.argmin(dim='z', keep_attrs=True, skipna=False) ...: res = indx.copy( ...: data=indx.data.map_blocks( ...: lambda ind, coord: coord[(ind,)], ...: array.z.data, ...: dtype=array.z.dtype ...: ) ...: ) In [4]: res.compute()
Out[4]:
<xarray.DataArray 'data_arr' (x: 10, y: 20)>
array([[20, 3, 3, 11, 20, 17, 3, 27, 24, 1, 7, 4, 22, 14, 7, 18,
5, 18, 7, 19],
[10, 21, 25, 3, 15, 25, 28, 8, 10, 9, 13, 3, 24, 17, 19, 23,
12, 19, 19, 28],
[ 1, 26, 10, 9, 16, 8, 17, 8, 6, 24, 28, 13, 23, 22, 26, 13,
28, 11, 6, 16],
[ 6, 9, 26, 27, 1, 2, 21, 8, 10, 19, 14, 14, 20, 25, 24, 4,
18, 12, 20, 2],
[22, 5, 12, 17, 13, 23, 23, 8, 27, 22, 1, 19, 26, 16, 12, 17,
19, 28, 8, 12],
[20, 8, 25, 13, 4, 12, 23, 13, 27, 18, 15, 28, 10, 10, 0, 12,
5, 14, 5, 27],
[29, 0, 19, 7, 15, 2, 8, 8, 13, 4, 12, 1, 7, 19, 14, 0,
3, 7, 12, 9],
[ 9, 8, 4, 9, 17, 6, 7, 5, 29, 0, 15, 28, 22, 6, 24, 24,
20, 0, 24, 23],
[ 1, 19, 12, 20, 4, 26, 5, 13, 21, 26, 25, 10, 5, 1, 11, 21,
6, 18, 4, 21],
[15, 27, 13, 7, 25, 3, 14, 14, 17, 15, 11, 4, 16, 22, 22, 23,
0, 16, 26, 13]])
Coordinates:
* x (x) int64 0 1 2 3 4 5 6 7 8 9
* y (y) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
FIX: correct dask array handling in _calc_idxminmax 591101988 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1