issue_comments
1 row where author_association = "MEMBER", issue = 522935511 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
issue 1
- 2x~5x speed up for isel() in most cases · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 554123807 | https://github.com/pydata/xarray/pull/3533#issuecomment-554123807 | https://api.github.com/repos/pydata/xarray/issues/3533 | MDEyOklzc3VlQ29tbWVudDU1NDEyMzgwNw== | shoyer 1217238 | 2019-11-14T23:01:41Z | 2019-11-14T23:01:41Z | MEMBER | Dataset.indexes is currently equivalent to just calling to_index() on each appropriate variable. But eventually we want to separate the notion of an index from variables with names matching dimensions, and this is a prerequisite for that. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
2x~5x speed up for isel() in most cases 522935511 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1