home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

where author_association = "MEMBER", issue = 522523336 and user = 2448579 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

These facets timed out: author_association, issue

user 1

  • dcherian · 7 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
554506074 https://github.com/pydata/xarray/pull/3527#issuecomment-554506074 https://api.github.com/repos/pydata/xarray/issues/3527 MDEyOklzc3VlQ29tbWVudDU1NDUwNjA3NA== dcherian 2448579 2019-11-15T19:57:57Z 2019-11-15T19:57:57Z MEMBER

In it goes. Great work as usual, @keewis. Thanks!

{
    "total_count": 2,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 2,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DatasetGroupBy.quantile 522523336
554479160 https://github.com/pydata/xarray/pull/3527#issuecomment-554479160 https://api.github.com/repos/pydata/xarray/issues/3527 MDEyOklzc3VlQ29tbWVudDU1NDQ3OTE2MA== dcherian 2448579 2019-11-15T18:39:44Z 2019-11-15T18:39:44Z MEMBER

I can also reproduce this with std

Which behaviour can you reproduce?

Replacing mean with std in my last example passes the identical check. Actually this works too

a_ds = ds.groupby("y").apply(lambda x: x).a a_da = ds.a.groupby("y").apply(lambda x: x) a_ds.identical(a_da)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DatasetGroupBy.quantile 522523336
554427515 https://github.com/pydata/xarray/pull/3527#issuecomment-554427515 https://api.github.com/repos/pydata/xarray/issues/3527 MDEyOklzc3VlQ29tbWVudDU1NDQyNzUxNQ== dcherian 2448579 2019-11-15T16:21:37Z 2019-11-15T16:21:37Z MEMBER

Hmm.. ok calling mean in this example passes the identical check so maybe there's something funny in quantile:

ds = xr.Dataset( data_vars={ "a": ( ("x", "y"), [[1, 11, 26], [2, 12, 22], [3, 13, 23], [4, 16,24], [5, 15, 25]], ) }, coords={"x": [1, 1, 1, 2, 2], "y": [0, 0, 1]}, ).expand_dims({"z": [0,1,2]}) a_ds = ds.groupby("y").mean("x").a a_da = ds.a.groupby("y").mean("x") a_ds.identical(a_da)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DatasetGroupBy.quantile 522523336
554395077 https://github.com/pydata/xarray/pull/3527#issuecomment-554395077 https://api.github.com/repos/pydata/xarray/issues/3527 MDEyOklzc3VlQ29tbWVudDU1NDM5NTA3Nw== dcherian 2448579 2019-11-15T15:07:55Z 2019-11-15T15:07:55Z MEMBER

:+1:

The transpose is fine, I think. It looks intentional and must be consistent with other Dataset/DataArray operations?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DatasetGroupBy.quantile 522523336
554391733 https://github.com/pydata/xarray/pull/3527#issuecomment-554391733 https://api.github.com/repos/pydata/xarray/issues/3527 MDEyOklzc3VlQ29tbWVudDU1NDM5MTczMw== dcherian 2448579 2019-11-15T14:59:21Z 2019-11-15T14:59:21Z MEMBER

LGTM @keewis.

Re: docstring. If you jave time, can you add a couple of examples (just pick two from the tests) to illustrate the scalar vs vector behaviour of q?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DatasetGroupBy.quantile 522523336
553650734 https://github.com/pydata/xarray/pull/3527#issuecomment-553650734 https://api.github.com/repos/pydata/xarray/issues/3527 MDEyOklzc3VlQ29tbWVudDU1MzY1MDczNA== dcherian 2448579 2019-11-13T23:21:57Z 2019-11-13T23:21:57Z MEMBER

:+1:

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DatasetGroupBy.quantile 522523336
553650044 https://github.com/pydata/xarray/pull/3527#issuecomment-553650044 https://api.github.com/repos/pydata/xarray/issues/3527 MDEyOklzc3VlQ29tbWVudDU1MzY1MDA0NA== dcherian 2448579 2019-11-13T23:19:50Z 2019-11-13T23:19:50Z MEMBER

Let's do enhancements!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DatasetGroupBy.quantile 522523336

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 2819.194ms · About: xarray-datasette