issue_comments
1 row where author_association = "MEMBER", issue = 482543307 and user = 13301940 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Use pytorch as backend for xarrays · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
655751621 | https://github.com/pydata/xarray/issues/3232#issuecomment-655751621 | https://api.github.com/repos/pydata/xarray/issues/3232 | MDEyOklzc3VlQ29tbWVudDY1NTc1MTYyMQ== | andersy005 13301940 | 2020-07-08T20:54:15Z | 2020-07-08T20:54:15Z | MEMBER |
I've been test driving xarray objects backed by CuPy arrays, and one issue I keep running into is that operations (such as plotting) that expect numpy arrays fail due to xarray's implicit converstion to Numpy arrays via I am wondering whether there is a plan for dealing with this issue? Here's a small, reproducible example: ```python
[24]: ds.isel(time=0, lev=0).tmin.plot() # Fails ``` Traceback```python --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-21-69a72de2b9fd> in <module> ----> 1 ds.isel(time=0, lev=0).tmin.plot() /glade/work/abanihi/softwares/miniconda3/envs/rapids/lib/python3.7/site-packages/xarray/plot/plot.py in __call__(self, **kwargs) 444 445 def __call__(self, **kwargs): --> 446 return plot(self._da, **kwargs) 447 448 @functools.wraps(hist) /glade/work/abanihi/softwares/miniconda3/envs/rapids/lib/python3.7/site-packages/xarray/plot/plot.py in plot(darray, row, col, col_wrap, ax, hue, rtol, subplot_kws, **kwargs) 198 kwargs["ax"] = ax 199 --> 200 return plotfunc(darray, **kwargs) 201 202 /glade/work/abanihi/softwares/miniconda3/envs/rapids/lib/python3.7/site-packages/xarray/plot/plot.py in newplotfunc(darray, x, y, figsize, size, aspect, ax, row, col, col_wrap, xincrease, yincrease, add_colorbar, add_labels, vmin, vmax, cmap, center, robust, extend, levels, infer_intervals, colors, subplot_kws, cbar_ax, cbar_kwargs, xscale, yscale, xticks, yticks, xlim, ylim, norm, **kwargs) 684 685 # Pass the data as a masked ndarray too --> 686 zval = darray.to_masked_array(copy=False) 687 688 # Replace pd.Intervals if contained in xval or yval. /glade/work/abanihi/softwares/miniconda3/envs/rapids/lib/python3.7/site-packages/xarray/core/dataarray.py in to_masked_array(self, copy) 2325 Masked where invalid values (nan or inf) occur. 2326 """ -> 2327 values = self.values # only compute lazy arrays once 2328 isnull = pd.isnull(values) 2329 return np.ma.MaskedArray(data=values, mask=isnull, copy=copy) /glade/work/abanihi/softwares/miniconda3/envs/rapids/lib/python3.7/site-packages/xarray/core/dataarray.py in values(self) 556 def values(self) -> np.ndarray: 557 """The array's data as a numpy.ndarray""" --> 558 return self.variable.values 559 560 @values.setter /glade/work/abanihi/softwares/miniconda3/envs/rapids/lib/python3.7/site-packages/xarray/core/variable.py in values(self) 444 def values(self): 445 """The variable's data as a numpy.ndarray""" --> 446 return _as_array_or_item(self._data) 447 448 @values.setter /glade/work/abanihi/softwares/miniconda3/envs/rapids/lib/python3.7/site-packages/xarray/core/variable.py in _as_array_or_item(data) 247 TODO: remove this (replace with np.asarray) once these issues are fixed 248 """ --> 249 data = np.asarray(data) 250 if data.ndim == 0: 251 if data.dtype.kind == "M": /glade/work/abanihi/softwares/miniconda3/envs/rapids/lib/python3.7/site-packages/numpy/core/_asarray.py in asarray(a, dtype, order) 83 84 """ ---> 85 return array(a, dtype, copy=False, order=order) 86 87 ValueError: object __array__ method not producing an array ``` |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use pytorch as backend for xarrays 482543307 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1