issue_comments
1 row where author_association = "MEMBER", issue = 467771005 and user = 13301940 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Support for __array_function__ implementers (sparse arrays) [WIP] · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
511172148 | https://github.com/pydata/xarray/pull/3117#issuecomment-511172148 | https://api.github.com/repos/pydata/xarray/issues/3117 | MDEyOklzc3VlQ29tbWVudDUxMTE3MjE0OA== | andersy005 13301940 | 2019-07-14T04:25:07Z | 2019-07-14T04:28:00Z | MEMBER | @nvictus, thank you for your work! I just tried this on CuPy arrays, and it seems to be working during array creation: ```python In [1]: import cupy as cp In [2]: import xarray as xr In [3]: x = cp.arange(6).reshape(2, 3).astype('f') In [4]: y = cp.ones((2, 3), dtype='int') In [5]: x In [6]: y In [7]: y.device In [8]: x.device In [9]: ds = xr.Dataset() In [10]: ds['x'] = xr.DataArray(x, dims=['lat', 'lon']) In [11]: ds['y'] = xr.DataArray(y, dims=['lat', 'lon']) In [12]: ds In [13]: ds.x.data.device In [14]: ds.y.data.device Even though it failed when I tried applying an operation on the dataset, this is still awesome! I am very excited and looking forward to seeing this feature in xarray: ```python In [15]: m = ds.mean(dim='lat') TypeError Traceback (most recent call last) <ipython-input-15-8e4d5e7d5ee3> in <module> ----> 1 m = ds.mean(dim='lat') /glade/work/abanihi/devel/pangeo/xarray/xarray/core/common.py in wrapped_func(self, dim, skipna, kwargs) 65 return self.reduce(func, dim, skipna=skipna, 66 numeric_only=numeric_only, allow_lazy=True, ---> 67 kwargs) 68 else: 69 def wrapped_func(self, dim=None, **kwargs): # type: ignore /glade/work/abanihi/devel/pangeo/xarray/xarray/core/dataset.py in reduce(self, func, dim, keep_attrs, keepdims, numeric_only, allow_lazy, kwargs) 3532 keepdims=keepdims, 3533 allow_lazy=allow_lazy, -> 3534 kwargs) 3535 3536 coord_names = set(k for k in self.coords if k in variables) /glade/work/abanihi/devel/pangeo/xarray/xarray/core/variable.py in reduce(self, func, dim, axis, keep_attrs, keepdims, allow_lazy, kwargs) 1392 input_data = self.data if allow_lazy else self.values 1393 if axis is not None: -> 1394 data = func(input_data, axis=axis, kwargs) 1395 else: 1396 data = func(input_data, **kwargs) /glade/work/abanihi/devel/pangeo/xarray/xarray/core/duck_array_ops.py in mean(array, axis, skipna, kwargs) 370 return _to_pytimedelta(mean_timedeltas, unit='us') + offset 371 else: --> 372 return _mean(array, axis=axis, skipna=skipna, kwargs) 373 374 /glade/work/abanihi/devel/pangeo/xarray/xarray/core/duck_array_ops.py in f(values, axis, skipna, kwargs) 257 258 try: --> 259 return func(values, axis=axis, kwargs) 260 except AttributeError: 261 if isinstance(values, dask_array_type): /glade/work/abanihi/devel/pangeo/xarray/xarray/core/nanops.py in nanmean(a, axis, dtype, out) 158 return dask_array.nanmean(a, axis=axis, dtype=dtype) 159 --> 160 return np.nanmean(a, axis=axis, dtype=dtype) 161 162 /glade/work/abanihi/softwares/miniconda3/envs/xarray-tests/lib/python3.7/site-packages/numpy/core/overrides.py in public_api(args, kwargs) 163 relevant_args = dispatcher(args, **kwargs) 164 return implement_array_function( --> 165 implementation, public_api, relevant_args, args, kwargs) 166 167 if module is not None: TypeError: no implementation found for 'numpy.nanmean' on types that implement array_function: [<class 'cupy.core.core.ndarray'>] ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support for __array_function__ implementers (sparse arrays) [WIP] 467771005 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1